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1. Details of NoiseGAN.
During the training of noise GAN Gnoise, we simultaneously train a discriminator network Dnoise to distinguish whether

a given noisy image is synthesized from Gnoise or sampled from the real nighttime VIS dataset. The two networks Gnoise

and Dnoise can be optimized in an adversarial way:

min
Gnoise

max
Dnoise

Ladv = log(Dnoise(vday)) + log(1−Dnoise(ṽnight +Gnoise(ṽnight))). (1)

The training scheme of our noise GAN is shown in Figure 1(a). Once finishing training, Gnoise can be used in the stage
one pipeline to generate realistic pseudo nighttime VIS frames. Detailed architecture and training procedures of Gnoise and
Dnoise are shown in Fig.1(b). The source codes for Gnoise and Dnoise are also included.
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Figure 1: (a) The training scheme of our noise GAN. (b) left: architecture of Gnoise. Right: architecture of Dnoise..

2. Details of Enhancement Network.
We present detailed components of our enhancement network G. ”3x3 Conv” stands for a convolutional block in which

the kernel size of convolution layers is 3 × 3, and the padding and the stride are all set to 1. The structure of Deformable
Convolution completely follows [7]. The source codes of the enhancement network G are also included.

3. Results of unsupervised methods retrained on FMSVD.
We present the results of unsupervised methods after retrained on FMSVD, including Z-DCE [2], EnGAN [3], and SCI [5].

Results are reported in Tab.1 and Figure 3. We can see that EnGAN still fails to suppress the noise effect after training on
our dataset. Z-DCE struggles to take balance between suppressing visible noise and enhancing light intensity. SCI produces
unsatisfying results with obvious color bias and noise and fails to enhance the low-light VIS images.
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Figure 2: Left: Detailed architecture of our enhancement network. Right: Detailed component of swin-attention block.

Methods FMSVD Third Party
PI↓ NIQE↓ HSE↑ PI↓ NIQE↓ HSE↑

EnGAN 5.424 8.324 2.83 3.460 4.838 3.16
Z-DCE 5.373 8.785 2.16 4.741 7.509 2.33
SCI 9.132 16.071 1.83 8.035 13.951 1.66
Ours 4.786 5.469 4.50 2.819 3.666 4.33

Table 1: Numerical results of unsupervised methods after retrained on FMSVD. The best results are shown in bold.

VIS NIR EnGAN Z-DCE SCI Ours

Figure 3: Visual comparisons with unsupervised methods after retraining on FMSVD (above dash) and the third-party dataset
(below dash).

4. Comparison between heuristic and physic-based relighting algorithm.
As has been mentioned in the main paper, we use a heuristic relighting algorithm instead of a strictly physic-based re-

lighting algorithm. The core obstacle lies in that existing intrinsic image decomposition algorithms can not deal with outdoor
scenes under complex natural illumination, so it is impossible to extract the reflectance component for relighting. However,
considering the co-located setting of camera and auxiliary illuminant at night, the shading component can be synthesized in a
strictly physics-based way. In this section, we first describe this physic-based shading simulation for relighting, then compare
its pseudo nighttime NIR results with our heuristic relighting algorithm. We also compare the effect of video enhancement
models trained on data synthesized by these two algorithms respectively.
Physic-based shading simulation for relighting. To start with, we predict the depth map using MonoViT [6]. The network
takes a daytime VIS frame vday as input, and outputs a depth map D ∈ RH×W for further usage:

D = Gdepth (vday) , (2)

D̂ =
1

D
, (3)

where smaller value in each position of D̂ represents closer distance to the camera.
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Figure 4: Visual results for pseudo nighttime NIR from two types of relighting algorithms. (a) daytime NIR, (b) Depth Map,
(c) pseudo nighttime NIR from our heuristic relighting algorithm, (d) pseudo nighttime NIR from our physic-based shading
relighting algorithm.

According to the inverse-square law, the light field intensity Idis is inversely proportional to the square of the distance d
from the light source:

Idis ∝
1

d2
, (4)

thus we calculate the intensity of each pixel in daytime NIR nday according to the depth map D̂ as:

ndis
day(i, j) = nday(i, j) ·

δ2

D̂(i, j)2
, (5)

where i ∈ {1, 2, ...,H}, j ∈ {1, 2, ...,W}, and δ is the value that represents the closest distance from the camera.
Based on the original NIR frame nday , the value of each pixel in ndis

day gradually fades as the distance from the camera
grows. This process basically reflects our consideration for physical distance, which is actually a quadratic decay model
regarding the distance from the camera. Note that we have to approximate reflectance component by using NIR images since
existing image intrinsic decomposition methods are inadequate for pre-processing, as has been discussed in the main paper.

To further consider the surface angle effect, we calculate the scale map P according to D̂, and use it to modulate ndis
day as:

n̂night = ndis
day · P, (6)

where each pixel in P represents the reflected light intensity according to the Lambertian Reflectance Law [1, 4]:

Ireflect = L ·N = |L||N| cosα, (7)

where Ireflect is the light intensity after reflection, L is the light-direction vector, N is the surface’s unit normal vector, and
α is the angle between these two vectors. For each pixel in D̂, we assume L to be perpendicular to the image plane and
calculate the unit normal vector of each pixel according to the k × k-sized subarea centered on it.
Pseudo nighttime results of two types of relighting algorithms. Visual comparison results are shown in Figure 4. Re-
sults from the physic-based algorithm suffer from excessive content loss. Our heuristic algorithm successfully models the
nighttime light distribution while preventing excessive content loss.
Results of enhancement models respectively trained on data synthesized by these two algorithms. The results are shown
in Table 2 and Figure 5. We can see that our enhancement network obtains better numerical and visual results when trained
on data synthesized via the heuristic relighting algorithm.

Therefore, we can conclude that, although the simulation of physics-based shading component is feasible, it will not
perform better than our heuristic relighting algorithm. The reason is that, the daytime NIR image has to be used as reflectance,
which is a rough approximation. So, without physics-based reflectance, to make the shading part only conform to physics
will not help the enhancement algorithms.

5. Samples from FMSVD.
Figure 6 shows more visual samples from our dataset.

6. Pseudo Nighttime NIRs.
Figure 7 shows more visual results for pseudo nighttime NIR generated by our pseudo relighting algorithm.
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Figure 5: Quantitative results of enhancement model respectively trained on data synthesized by two types of relighting
algorithms. (a) VIS, (b) NIR, (c) Results from model trained on data generated by our physic-based shading relighting
algorithm, (d) Results from model trained on data generated by our heuristic relighting algorithm.

Table 2: Quantitative results of enhancement models respectively trained on data synthesized by two types of relighting
algorithms.

Methods FMSVD Third-Party
PI↓ NIQE↓ HSE↑ PI↓ NIQE↓ HSE↑

Physics-based Shading 5.617 6.440 3.66 3.121 3.702 3.83
Heuristic 4.786 5.469 4.50 2.819 3.666 4.33
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Figure 6: Representative examples from our dataset. Above the dash: daytime; beneath the dash: nighttime. (a) NIR; (b)
VIS.
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Figure 7: Visual results for pseudo NIR. (a) original daytime NIR; (b) pseudo nighttime NIR; (c) depth map estimated by
Gdepth.


