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1. Implementation details
Methods for comparison. We provide details of the hy-
perparameters used for reproducing the results of other
methods as follows: (a) ECP [9]: We set the weight of
entropy penalty to 0.1 following [9] (b) LS [8]: Follow-
ing [5, 7], we report the results obtained with α = 0.05.
(c) FL [7]: We train the models with a fixed regulariza-
tion parameter (γ) of 3. (d) Mixup [11]: We use a shape
parameter α of 0.2, the best performing one in [11]. (e)
FLSD [7]: Following the schedule in [7], we use the pa-
rameter γ of 5 for the samples whose output probability for
the ground-truth class is within [0, 0.2), otherwise we use
the parameter γ of 3. (f) CRL [6]: We set the balancing
parameter of the ranking loss as 1.0. (g) CPC [1]: We set
the weights of binary discrimination and binary exclusion
losses as 0.1 and 1.0, respectively. (h) MbLS [5]: We train
the models with margins of 6 and 10 for the CIFAR10/100
datasets and Tiny-ImageNet dataset, respectively. (i) Reg-
Mixup [10]: We obtain the results with a shape parameter α
of 10.0 as suggested in [10].

2. More results
Q and α. We perform experiments with various combina-
tions of α and Q to further investigate the importance of di-
verse samples. We adopt the ResNet-50 [2] models trained
with M-NDCG for the analyses, and show the calibration
performances in terms of ECE and AECE on the validation
sets of CIFAR10 [3] and Tiny-ImageNet [4] in Fig. 1 and 2,
respectively. From the figures, we can observe three things:
(1) Our models using α within the range of [1, 3] achieve
the best performances in most cases. As shown in Fig. 2 of
the main paper, such distributions enable the model to sam-
ple more diverse and large mixup coefficients λ, suggest-
ing that generating diverse samples with relatively strong
interpolations is crucial for our framework. (2) Our mod-
els also perform better with larger αs than smaller ones, in
contrast to vanilla mixup [11, 12]. However, in some cases,
the performances worsen with very large α. (3) For most
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α values, both ECE and AECE improve as more augmented
samples are used. This indicates that incorporating more di-
verse ranking relationships based on augmented samples is
favorable in our framework. However, using more samples
with very small or large α leads to degraded performance.
Overall, these observations highlight the importance of us-
ing diverse samples and considering a range of α values for
effective calibration in our framework.
References

[1] Jiacheng Cheng and Nuno Vasconcelos. Calibrating deep
neural networks by pairwise constraints. In CVPR, 2022. 1

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1

[3] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1, 2

[4] Ya Le and Xuan Yang. Tiny ImageNet visual recognition
challenge. CS 231N, 2015. 1, 2

[5] Bingyuan Liu, Ismail Ben Ayed, Adrian Galdran, and Jose
Dolz. The devil is in the margin: Margin-based label smooth-
ing for network calibration. In CVPR, 2022. 1

[6] Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum
Hwang. Confidence-aware learning for deep neural net-
works. In ICML, 2020. 1

[7] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart
Golodetz, Philip Torr, and Puneet Dokania. Calibrating deep
neural networks using focal loss. In NeurIPS, 2020. 1

[8] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.
When does label smoothing help? In NeurIPS, 2019. 1

[9] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz
Kaiser, and Geoffrey Hinton. Regularizing neural networks
by penalizing confident output distributions. In ICLR Work-
shop, 2017. 1

[10] Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip Torr, and
Puneet K. Dokania. Using mixup as a regularizer can sur-
prisingly improve accuracy & out-of-distribution robustness.
In NeurIPS, 2022. 1

[11] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes,
Tanmoy Bhattacharya, and Sarah Michalak. On mixup train-
ing: Improved calibration and predictive uncertainty for deep
neural networks. In NeurIPS, 2019. 1

[12] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. Mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 1



0.2 0.4 0.8 1 2 3 5 10
2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

EC
E/

AE
CE

 (%
)

CIFAR10, Q=3
ECE
AECE

0.2 0.4 0.8 1 2 3 5 10
2.6

2.8

3.0

3.2

3.4

3.6

3.8

EC
E/

AE
CE

 (%
)

CIFAR10, Q=4
ECE
AECE

0.2 0.4 0.8 1 2 3 5 10

2.4

2.6

2.8

3.0

3.2

3.4

3.6

EC
E/

AE
CE

 (%
)

CIFAR10, Q=5
ECE
AECE

0.2 0.4 0.8 1 2 3 5 10
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

EC
E/

AE
CE

 (%
)

CIFAR10, Q=6
ECE
AECE

Figure 1: Quantitative results with various combinations of the
parameter of Beta distribution (α) and the number of aumgented
samples (Q). We plot the variation of both ECE (%) and
AECE (%) on the validation split of CIFAR10 [3]. Best viewed
in color.
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Figure 2: Quantitative results with various combinations of the
parameter of Beta distribution (α) and the number of aumgented
samples (Q). We plot the variation of both ECE (%) and
AECE (%) on the validation split of Tiny-ImageNet [4]. Best
viewed in color.


