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1. Notation List
For the convenience of the reader, we listed the Table of

Notation containing frequently used notations along with
their definition in Table 1.

2. Datasets
ActivityNet-1.3 [6] contains 10,024 training videos and
4,926 validation videos sorted into 200 human action cate-
gories. The average duration is 117 seconds.

FCVID [13] contains 45,611 videos for training and 45,612
videos for validation, which are annotated into 239 classes.
The average duration is 167 seconds.

Mini-Kinetics is a subset of the Kinetics [14] dataset. We
establish it following [10, 24, 25, 44]. The dataset include
200 classes of videos, 121k for training and 10k for valida-
tion. The average duration is around 10 seconds [14].

3. Implementation Detail
3.1. Network Architecture

Encoders. For audio encoder fA and fG we use Mo-
bileNetV2[? ] and for local visual encoder fL we use ResNet-
50[? ]. We use a patch size of 128× 128 for the input to fL,
thus the size of the patch extracted by the patch extraction
network is also the same. To encode a single image, the fG
requires 0.33 GFLOPs and fL requires 1.35 GFLOPs, mean-
while to encode the whole audio sequence fA requires 0.68
GFLOPs.

AV-TeST. In our implementation we construct TFAV using
a multi-head attention transformer[33] with 256 encoder
dimension size, 2 stacks, and 4 heads. As the input to the
transformer is concatenated audio-visual feature, for each
modality we embed them to 128− d vectors with separate
linear embedding layers. To reconstruct the visual token, we
utilize a transformer with the same architecture and append
a linear embedding layer at the end.

AESPA. In our implementation of AESPA module, we use
the same transformer architecture for both audio and visual
modality. To minimize the computational burden, we reduce
the incoming channel of both audio and visual modality to
256. Then we use the reduced feature maps as input to the

bottleneck fusion transformers. Each modality transformer
consists of 4 stack of encoder with 4 heads. We use 4 bottle-
neck tokens to be appended to the modality tokens.

Training Details. To train the network, we use an SGD op-
timizer with cosine learning rate annealing and a momentum
of 0.9. The L2 regularization co-efficient is set to 1e-4. The
two encoders fG and fL are initialized using the ImageNet
pre-trained models1, while the rest of the network is trained
from random initialization. The size of the mini-batch is
set to 24. The initial learning rates of fG, fA, fL, fC, π, æ,
and TFAV are set to 0.001, 0.001, 0.002, 0.01, 2e-4, 2e-4,
and 0.01. We use a masking ratio of 0.75 for Lmask, and for
Gumbell-Softmax we use 5 as the temperature value

3.2. Patch Extraction Network.

We explain in detail the process inside the spatial patch
extraction network. To enable end-to-end training, we adopt
the differentiable solution proposed in [37] to obtain ṽt.
Suppose that the size of the original frame vt and the patch
ṽt is H×W and P ×P (P < H,W ), respectively2. We
assume that π outputs the continuous centre coordinates
(x̃tc, ỹ

t
c) of ṽt using audio-enhanced global visual feature up

to tth ({eGA
1 , . . . , eGA

t }),
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t
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2
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2
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2
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(1)

We refer to the coordinates of the top-left corner of the frame
as (0, 0), and Eq. (1) ensures that ṽt will never go outside of
vt.

The feed-forward process involves the bilinear interpo-
lation method to enable backpropagation through (x̃tc, ỹ

t
c).

As mentioned in the paper, the coordinates of a pixel in the
patch ṽt can be expressed as the addition of (x̃tc, ỹ

t
c) and a

fixed offset:
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t
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2
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2
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.
(2)

1In most cases, we use the 224x224 ImageNet pre-trained models provided
by PyTorch [? ].

2In our implementation, the height/width/coordinates are correspondingly
normalized using the linear projection [0, H]→ [0, 1] and [0,W ]→ [0, 1].
Here we use the original values for the ease of understanding.
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Variables Functions
Symbol Definition Symbol Definition
t Frame or time index fA Audio encoder
at Audio spectrogram clip at time fG Global visual encoder
vt Input image frame at time t fL Local visual encoder
y label class TFAV AV-TeST Transformer Network
eA
t Audio feature at time t FCs Saliency score prediction head
eG
t Coarse/Global visual feature at time t æ Audio Enhanced Spatial Patch Attention (AESPA) module
zA
l,t AESPA audio vector at layer l at time t TFl

A AESPA audio transformer at layer l
zG
l,t AESPA visual vector at layer l at time t TFl

G AESPA visual transformer at layer l
eGA
t Enhanced Coarse/Global visual feature at time t π Spatial patch extraction network
eL
t Fine/Local visual feature at time t ψ Fusion transformer
eTF
t Audio-visual feature for AV-TeST input t fAV

C Audio-visual classifier
st Frame saliency score at time t fAC Auxiliary audio prediction head
ẽA
t Transformed audio feature at time t FCG Auxiliary frame-wise global visual prediction head
(x̃tc, ỹ

t
c) Center coordinates t FCL Auxiliary frame-wise local visual prediction head

ṽt Visual patch at time t FCA Auxiliary frame-wise audio prediction head
(x̃tij , ỹ

t
ij) Coordinates of pixel patch t fV

C Auxiliary visual prediction head
oij Fixed offset for coordinate (i, j) Hyperparameters
ẽG
t AV-TeST embedded visual token (i, j) Symbol Definition
êG
t Reconstructed AV-TeST embedded visual token TG Visual temporal glance limit
p

′

t Softmax prediction of fAV
C with feature only at time t k Number of selected frames for prediction

s̃t Pseudo-label saliency score P Patch size
pt Class prediction

Table 1. Table of Notation

(x̃tij , ỹ
t
ij) denotes the corresponding horizontal and vertical

coordinates in the original frame vt to the ith row and jth

column of ṽt, while the offset oij is the vector from the patch
center (x̃tc, ỹ

t
c) to this pixel. Given a fixed patch size, oij is

a constant conditioned only on i, j, regardless of t or the
inputs of π.

Since the values of (x̃tc, ỹ
t
c) are continuous, there does

not exist a pixel of vt exactly located at (x̃tij , ỹ
t
ij) to di-

rectly get the pixel value. Hence, we utilize the four adjacent
pixels of (x̃tij , ỹ

t
ij) to obtain the pixel value using bilinear

interpolation. We denote the four surrounding coordinates
as (⌊x̃tij⌋, ⌊ỹtij⌋), (⌊x̃tij⌋+1, ⌊ỹtij⌋), (⌊x̃tij⌋, ⌊ỹtij⌋+1) and
(⌊x̃tij⌋+1, ⌊ỹtij⌋+1), respectively, where ⌊·⌋ denotes the
rounding-down operation. By assuming that the correspond-
ing pixel values of these four pixels are (mt

ij)00, (mt
ij)01,

(mt
ij)10, and (mt

ij)11, the pixel value at (x̃tij , ỹ
t
ij) (referred

to as m̃t
ij) can be obtained via differentiable bilinear interpo-

lation:

m̃t
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ij−⌊x̃tij⌋)(ỹtij−⌊ỹtij⌋).

(3)

Consequently, we can obtain the image patch ṽt by travers-
ing all possible i, j in Eq. (3).

Assume we have the training loss L, we can compute the
gradient ∂L/∂m̃t

ij with standard back-propagation. Follow-
ing the chain rule, we have

∂L
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∂m̃t
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Combining Eq. (2) and Eq. (4), we can further derive

∂m̃t
ij

∂x̃tc
=
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∂x̃tij
,

∂m̃t
ij

∂ỹtc
=
∂m̃t

ij

∂ỹtij
. (5)

Given that x̃tc and ỹtc are the outputs of the network π, the
back-propagation process is able to proceed in an ordinary
way.

4. Qualitative Results
We present more qualitative results in image format in

Fig. 1 and in video format. Our qualitative results show how
the model is able to estimate the salient frames and prioritize
them over the non-relevant ones, e.g. in (c) salient frames
are the ones containing ice hockey-related actions and in



(a)

(b)
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(d)

(e)

Figure 1. Extended qualitative result shows pair of the first 8 frames in original sequence and the Top-8 salient frames from classes
(a) “tennis serve”, (b) “playing ten pins”, (c) “playing pool”, (d) “playing ice hockey”, and (e) “playing
violin”. We also provide qualitative results in video format to better comprehend the effect of the audio.

(c) and (a) frames with only text are non-salient. From the
examples in video format, we observe how strong audio cues
are present in the salient frames. For example, in “playing
ten pins” class sample, the sound of the ball crashing the
pins provide strong cues to estimate saliency.
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