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1. Additional Ablations

Few-shot Image Classification Paper Fig. 8 shows the ob-
tained results with different numbers of support examples
per class, i.e. 4, 8 and 16-shot training data per-class. Sim-
ilar to the results presented in Paper Section 5, LFA either
matches (i.e. for 4-shot) or outperforms (i.e. for 8 and 4-
shot) soft-prompting.

Aligning Uni-modal Models: Paper Fig. 13, we reported
the results when aligning self-supervised vision models
(i.e., BYOL, BarlowTwins, and MoCo v3) and the cpt-text
encoder accessed via OpenAI’s embeddings API for 16-shot
per class and with a single center crop. In Tab. 2, we show
the obtained average accuracy on the 11 image datasets for
8- and 16-shot per class, and with either a single center crop
or five crops. Overall, LFA outperforms kNN and linear
probe classifiers, and by a wide margin when the labeled
data is scarce (i.e., a single crop). Note that another ben-
efit of LFA is the possibility of using data augmentation
in the language domain, e.g., prompt ensembling, instead
of a single standard prompt, i.e., “a photo of a {cls
name}”, which can further boost the performances.

2. Experimental Details

Overall, the training procedure of LFA remains as de-
tailed in Paper Section 4.5. After the β-Procrustes initialisa-
tion of the mapping W, we refine it using ARerank loss for
given number of iteration (i.e. to be detailed on a per-dataset
basis) using AdamW with a learning rate of 5e-4, a weight
decay of 5e-4 and a cosine scheduler that decreases the
learning rate to 1e-7 by the end of training. For most exper-
iments, and unless noted otherwise, we add a small amount
of Gaussian noise (i.e. std of 3.5e-2) and apply dropout (i.e.
probability of 2.5e-2) to the image embeddings to avoid
overfitting and make the training robust to the choice of
the number of refinement steps. Next, we will present the
different experimental details on a per-setting basis. For
each experiment, the class prototypes are generated by in-
serting the class name in the standard templates [14] e.g.,

“a photo of a {cls name}” for image tasks and “a
video frame of a person {action type}”, in
order to give a better initialisation of the prototypes and fa-
cilitate the image-text alignment. For all few-shot results,
we report the average accuracy over 3 runs.

2.1. Standard Few-shot Image Classification

In this setting, we set β based on a 3-fold cross valida-
tion on the training set with a 20-70 validation-train split.
We select the β with the highest average validation accu-
racy across the 3-folds and from a set of values in the range
[0.0, 1.0] with a step of 0.05. We generate 5 crops for each
training image of size 224x224, i.e. four corner crops and a
central crop, and use their features for training. While the
training is robust to the number of refinement steps, we no-
ticed that the better the orthogonal and β-Procrustes initiali-
sation results, and less number of steps needed to obtain the
optimal mapping. Tab. 3 shows the number of refinement
for each image classification dataset.

2.2. Base-to-New (Zero-Shot) Recognition

For base-to-new experiments, we found that β = 0.9
performs well on most dataset without requiring a cross-
validation step. Similar to the standard few-shot setting,
we train with 5 crops and refine the mapping for up to 100
iterations. See Tab. 4 for the number of refinement steps for
each dataset.

2.3. Domain Generalisation:

For domain generalisation experiments, we set β = 0.9
and train with 5 crops for 200 refinement iterations.

2.4. Action Recognition:

For few-shot action recognition experiments, we set β =
0.9 and train with a single center crop. For UCF101, no
dropout is used and the Gaussian noise is reduced to 2.5e-2,
and we conduct 300 refinement steps. For HMDB51, con-
duct 100 refinement steps. When using the whole training
set for alignment, we use the same setup as the few-shot set-



Table 1: Few-shot Classification: the obtained average Top-1 test acc. on 11 classification datasets with CoOp [14], Linear
Probe, and the proposed LFA, with either 4, 8 or 16-shot per class and with RN50 as the visual encoder.

N-shot Method Pets Flowers102 Aircraft DTD EuroSAT Cars Food101 SUN397 Caltech101 UCF101 ImageNet Avg. ∆

CLIP RN50 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77

4
Linear Probe 56.35 84.80 23.57 50.06 68.27 48.42 55.15 54.59 84.34 62.23 41.29 57.19
CoOp 86.06 86.52 22.02 52.72 70.93 61.62 72.64 63.67 88.53 67.06 59.96 66.52
LFA 82.21 88.28 24.15 54.51 68.76 60.69 71.81 65.50 88.88 69.25 58.36 66.58 +0.06

8
Linear Probe 65.94 92.00 29.55 56.56 76.93 60.82 63.82 62.17 87.78 69.64 49.55 64.98
CoOp 83.58 91.81 28.18 59.14 77.65 67.32 72.04 65.64 90.33 72.74 62.04 70.04
LFA 84.93 92.62 30.17 60.54 77.36 67.60 74.47 68.54 91.33 73.33 61.36 71.10 +1.06

16
Linear Probe 76.42 94.95 36.39 63.97 82.76 70.08 70.17 67.15 90.63 73.72 55.87 71.10
CoOp 86.16 94.80 32.29 63.16 83.55 73.27 74.46 69.12 91.62 75.29 63.08 73.35
LFA 86.75 94.56 35.86 66.35 84.13 73.58 76.32 71.32 92.68 77.00 63.65 74.75 +1.40

Table 2: Aligning Disjoint Modalities: we show the obtained average Top-1 acc. on 11 image classification datasets for 8-
and 16-shot per class and with either a single center crop or five crops as data augmentation.

BYOL BarlowTwins MoCo v3

N-shot Crops kNN Lin. Probe LFA ∆ kNN Lin. Probe LFA ∆ kNN Lin. Probe LFA ∆

16 1 50.61 56.33 64.26 +7.93 50.77 56.19 64.45 +8.26 54.64 59.99 66.90 +6.91
16 5 51.69 61.24 64.48 +3.24 51.64 61.49 64.91 +3.41 55.7 64.79 67.23 +2.44
8 1 44.27 51.09 58.15 +7.05 43.86 50.70 58.08 +7.37 48.04 54.77 60.93 +6.15
8 5 47.07 55.69 58.31 +2.62 47.02 55.71 58.52 +2.81 51.11 59.16 61.00 +1.84

ting, but we conduct 500 refinement steps for UCF101 and
300 for HMDB51.

Table 3: Refinement Steps for Standard Few-shot Clas-
sification: we specify the number of refinement steps on a
per-dataset basis.

Datasets Nbr. refinement steps

Cars 2000
Caltech101, DTD, Aircraft 1000
EuroSAT, Food101, ImageNet, UCF101 200
Flowers, SUN397 100
Pets 30

Table 4: Refinement Steps for Base-to-New (Zero-Shot)
Recognition: we specify the number of refinement steps on
a per-dataset basis.

Datasets Nbr. refinement steps

Caltech101, DTD, UCF101, ImageNet 100
EuroSAT, Food101, Flowers, Cars, SUN397 50
Caltech101 40
Pets 10

2.5. Aligning Disjoint Modalities

For the alignment of the features of uni-modal models,
we use 3 self-supervised RN50 visual encoders: BYOL,
BarlowTwins and MoCo v3, in addition to the cpt-text en-
coder as our language encoder. After extracting the features,
we first conduct a Gaussian random projection implemented

using scikit-learn [6] to reduce the dimensionality of
the visual features from 2048 to 1536 to match those of the
text encoder. Then we proceed as in the standard few-shot
classification setup, by first finding β with cross-validation,
initializing the mapping with β-Procrustes, then refining it
for 700-800 iterations using 5 crops.

In terms of the kNN and linear probe baselines, we fol-
low the practical recommendations of [9], and train the clas-
sifiers on the ℓ2 normalized and forzen visual features (i.e.
the original 2048-d features). For the kNN classification,
we use 16 neighbors for training, as for the linear probe,
we follow [9] and use the multinomial logistic regression
implementations of scikit-learn, and train with an ℓ2
penalty and the LBFGS solver. Similar to LFA, all baselines
were trained with 5 crops.
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