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1. Introduction
This supplementary document provides additional in-

sights about our models and their evaluations, including
comparisons with baselines.

2. Implementation Details
Please refer to our main manuscript (Section 4) for the

details of transformer networks used in TLSE and GAN
controller. The generator model used in TLSE is based
on [2]. It contains 18 layers where modulated convolu-
tion [5] and Leaky ReLU [11] are sequentially utilized at
each layer. Modulated convolutions have a filter size of 32
and a kernel size of 1 × 1. To reduce the computational
complexity, the output resolution of the generator model is
set to 64 × 64. No image upsampling is utilized in the in-
termediate layers so that the resolution of its Fourier block
and coordinate embedding is set to 64× 64.

Inference time to edit a GAN feature x on a single
Nvidia RTX 3090 takes approximately 0.004 second using
our GAN controller. Face synthesis time (the resolution of
synthesized faces is 1024 × 1024) of the pre-trained Style-
GAN2 model per a GAN feature x takes approximately 0.1

Edit illum pose expr all
RigNet [10] 0.967 0.961 0.979 0.939

Transformer (our) 0.981 0.986 0.983 0.963

Table 1: Face identity evaluation (cosine similarity) to com-
pare different GAN controller methods using the same in-
termediate latent space Q.

Edit illum pose expr
RigNet [10] 0.43 0.16 3.61

Transformer (our) 0.41 0.11 3.49

Table 2: Face concept edit precision evaluation (mean ab-
solute error) to compare different GAN controller methods
using the same intermediate latent space Q.

second on a single Nvidia RTX 3090. Note that reported
inference time for a baseline [1] is 0.21 second on a single
Nvidia Titan XP.

3. An Ablation Study of the Impact of Latent
Space Editing with Transformers on the
Performance

In this section, we compare our transformer-based GAN
space controller with RigNet model used in [10]. Both mod-
els utilize the intermediate latent space Q in the optimiza-
tion step. Tab. 1 presents the face identity scores (higher
is better) calculated on the StyleFlow dataset with face em-
beddings [3]. The results demonstrate that our transformer-
based controller outperforms RigNet model in term of pre-
serving face identities under different face manipulation
configurations. The reason is that the transformers can ef-
fectively capture face details at multiple abstraction levels
by ensuring that identities remain unaffected during face
manipulation. Furthermore, face concept editing precision
is reported in Tab. 2. In particular, complex face concepts
like pose and expression can be edited more precisely with
transformers. Since these parameters are controlled by mul-
tiple abstraction levels in the GAN space (please refer to
Fig. 10 in our main manuscript for details), disentangling
them with RigNet model is not sufficient to capture all de-
tails.

4. An Ablation Study of the Impact of Coeffi-
cients and Multi-Task on the Performance

In this section, we analyse the impact of coefficients and
multi-task learning on the training of our GAN controller.
Results are reported in Tab. 3. Here, the base model repre-
sents our best model configuration where λedit and λsparse
are set to 1e − 2 and 1e − 4, respectively, while multi-
task learning is utilized. First, we test the impact of multi-
task learning on identity and edit scores. Results show
that our model overfits to pose and expression manipula-
tion when multi-task learning is not employed. Second, we



ID Score Edit Score
all illum pose expr

Base Model 0.963 0.41 0.11 3.49
w/o Multi-Task 0.965 0.47 0.10 3.51
λedit = 1e−1 0.978 0.49 0.20 3.81
λedit = 1e−3 0.943 0.40 0.10 3.45
λsparse = 1e−3 0.971 0.45 0.16 3.65
λsparse = 1e−5 0.955 0.44 0.13 3.57

Table 3: Identity and edit scores computed under different
configurations in order to demonstrate the impact of coeffi-
cients (λedit and λsparse) and multi-task learning.

inspect the effect of the λedit coefficient. As expected, set-
ting this value higher promotes keeping more face identi-
ties/attributes in the manipulation step. On the other hand,
when it is low, face identities/attributes start to differ from
the those in the input GAN features, leading to a decrease in
the identity score. Later, we explore the contribution of the
λsparse coefficient during the optimization step. Similarly,
increasing the value of this coefficient limits the learning of
a full GAN controller for face editing. However, when the
value is reduced, both identity and edit scores are simultane-
ously affected, since unrelated abstraction levels contribute
to the edited GAN features.

5. Additional Discussion for the Needs of Two
Pairs in Optimization

The purpose is to unveil the unseen correlations of facial
concepts in GAN space X using feature pairs x1,x2 ∈ X .
For instance, x1 and x2 might represent a smiling face and
a right-side illuminated face respectively. Our loss function
enables to learn a new GAN feature x3 (edited feature) that
jointly represents a smiling and right-side illuminated face.
This ultimately improves the diversity and quality of edits
for our controller.

6. Application on StyleGAN and Diffusion
models

For StyleGAN, Ganspace [4] utilized residuals
xedit = x+∆xedit (Eq. 5 in our main manuscript)
for face manipulation. Since our model can optimize
∆xedit efficiently, our model can be employed to control
GAN space X of StyleGAN models. As for diffusion-
based models, a recent work [7] indicates that high-level
hierarchical features can be estimated by latent variables.
We consider that our latent codes can be employed to
disentangle the feature space of latent diffusion models.

7. Results for Manipulation on Paintings

One of the advantages of manipulating GAN features is
that the same GAN controllers can be used for different
styles without the need of retraining. To be specific, our pre-
trained pipeline can be used to manipulate face paintings
by only replacing the original StyleGAN2 generator with
a StyleGAN2 painting generator by Ixp = σp(x). Fig. 2
illustrates the visual results for editing paintings. Pose ma-
nipulation results are only reported, since no illumination
or expression concept exists in the GAN space of paintings.
At the end, the figure shows that high-quality and consistent
results are achieved.

8. Results for Face Likeness Editing

Along with the facial expression θ, the scene illumina-
tion γ, and the head pose (R, t), the parameter space P
(i.e., parameter space of 3D morphable face models) allows
us to control the facial shape β and the skin texture ψ for
face editing. To be specific, these parameters control facial
features such as age, gender, and identity. For this task, we
utilize our transformer-based GAN controller to edit these
parameters using the same pipeline. First, we analyze the
impact of changing these parameters onto StyleGAN2 fea-
tures x. The changes for different abstraction levels with
mean square difference and variance are illustrated in Fig. 1.
Similarly, our model sparsely edits the features by focusing
on coarse and medium details in the GAN space. No result
related to this experiment is reported in [10]. Indices deter-
mined in [1] for gender and age perfectly overlap with the
indices estimated in our method.

To visualize the effectiveness of our method for face edit-
ing in terms of face likeness, we transfer shape and texture
parameters from target images to source images. Results
are shown in Fig. 3. The results demonstrate that age and
gender attributes can be accurately transferred from target
to source images using our method. Similarly, the back-
ground and other attributes observed in source images are
largely preserved in edited images.
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Figure 1: Change of StyleGAN2 features x at different ab-
straction levels after face likeness parameters (i.e., shape
and texture parameters) are manipulated.



We also report results for face likeness editing on real
faces in Fig. 4. Projections of [6] onto StyleGAN2 space
are employed. High-quality results are similarly produced
by manipulating age and gender attributes. Here, we also
report the results for illumination manipulation.

9. Background Preservation

The undesired background changes might happen by set-
ting a low value for λedit so that less details from source
GAN feature x can be preserved (please see Tab. 3). Also,
since image backgrounds are not explicitly represented as
a separate face concept in H(·) model (i.e., the related cat-
egory does not exist in 3DMMs), background information
may be encoded with other concepts like gender and age.

10. Additional Comparative Analyses

As indicated in [1] and already shown in our results
(please refer to Fig. 5 and Fig. 6 in our main manuscript
for details), the baselines do not perform well when all face
concepts are simultaneously applied. Therefore, we sepa-
rately report comparative results in Fig. 5, Fig. 6 and Fig. 7
for pose, expression and illumination manipulation where
severe artifacts can be observed for baselines. As baselines,
InterfaceGAN (IG) [8], SeFa [9], StyleRig (SR) [10] and
StyleFlow (SF) [1] are selected. Note that since there is no
available IG model for illumination manipulation, we do not
report any visual results on illumination manipulation for
IG. Similar to the reported observations in our manuscript,
for pose manipulation as illustrated in Fig. 5, SF modifies
the other face attributes such as age during face manipula-
tion (red boxes). On the other hand, SR can unintention-
ally change other concepts like expression and illumination
(blue boxes). For SeFa, face identities are severely altered
(orange boxes). IG yields consistent results with our re-
sults. However, when all face concepts are simultaneously
applied (please refer to Fig. 6 in our main manuscript), the
visual performance of IG significantly decreases.

The results for expression manipulation are demon-
strated in Fig. 6. One of the common issues is that models
have difficulty in editing faces beyond the limit set by the
users (blue boxes). This indicates that the learning capac-
ity of these models is very limited compared to our method.
Another problem is that face identities can be altered during
the expression manipulation (red boxes). Also, producing
unrealistic expressions is severe for some models (orange
boxes).

Fig. 7 illustrates the results for illumination manipula-
tion. Similarly, our method performs significantly better
than the baselines in preserving attributes and identities (red
boxes), as well as producing consistent and satisfactory re-
sults (blue boxes).

11. Additional Visual Results

Fig. 8 shows our results when all face concepts are simul-
taneously transferred from target images to source images.
We observe that our method can produce consistent results
(each column) and successfully handle multiple concepts
for face editing.

12. Limitations of Our Method

The main limitation of our method is that the 3D struc-
tures of faces are captured with 3DMMs. Hence, facial
objects such as eyeglasses and hats are not represented in
the parameter space P . We found that the shadow patterns
generated by these objects may remain on the manipulated
faces under different illumination. Fig. 9 provides illustra-
tive examples for this limitation.
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Figure 2: Results for face manipulation on paintings.

Figure 3: Sample results provided by our method for transferring face likeness (i.e., shape and texture parameters) from target
to source images.
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Figure 4: Sample results provided by our method for editing on real faces according to face likeness and illumination.



Figure 5: Comparative results for pose manipulation.

Figure 6: Comparative results for expression manipulation.

Figure 7: Comparative results for illumination manipulation.



Figure 8: Sample results provided by our method for transferring pose, expression and illumination simultaneously from
target to source images.



Figure 9: Limitation of our model under different illumination.


