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Testing strategy RSG PD

SDAP 36.19/0.8585 36.58/0.8630
SDAP (E) 37.22/0.8926 37.30/0.8937

Table 1: The effect of different testing strategies on
PSNR(dB)/SSIM.

1. RSG for Testing

To evaluate the impact of our RSG strategy on the test,
we replace PD with RSG in the testing stage. Table 1 shows
the PSNR and SSIM results in the SIDD validation dataset
[1] for different testing methods.

In training, RSG generates a larger quantity of training
data with more varied random sampling differences as com-
pared to PD. Thus, RSG can achieve better results when
used for training. However, in testing, while sampling helps
to break the spatial correlation of noise pixels, it also re-
duces the spatial correlation of signal pixels to some degree.
As a result of its random sampling step, the RSG strategy
tends to have a more negative impact on the spatial correla-
tion of signal pixels, which can result in a decline in BSN
denoising performance. Consequently, the performance of
testing with RSG is inferior to that of testing with PD.

Since the sub-samples generated by RSG are different
each time, the strategy of averaging after multiple denois-
ing can be used to achieve better performance of the final
denoising results. Therefore, we use RSG n times for test-
ing and average the results before enhancement. This per-
formance enhancement method is denoted by “n RSG + en-
hancement”, which is shown schematically in Figure 1. “n
RSG” means that no enhancement is performed and the de-
noising results are averaged directly. Table 2 shows the ef-
fect of different “n” values on the PSNR results when RSG
is used for testing.

The results shown in Table 2 verify that the using “sin-
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n 1 2 3 4 5 6 7 8

n RSG 36.19 36.52 36.64 36.70 36.74 36.76 36.78 36.79
n RSG + enhancement 37.22 37.24 37.25 37.25 37.25 37.25 37.25 37.25

Table 2: The effect of different “n” values on PSNR(dB).

gle PD + augmentation” (SDAP (S)(E)) in testing is always
better than RSG. Therefore, we use PD strategy instead of
RSG strategy in testing.

2. More Results on Real-world Datasets

In Figures 3 and 4, we show more denoising results on
the SIDD validation dataset [1] and DND benchmark [7].

3. Limitations

In Figure 2, we illustrate the limitation of our method.
Small details in some images are more likely to be consid-
ered as noise after being sampled by PD. BSN denoising
masks the center pixel, which also causes some image de-
tails to be ignored. Since our method uses the PD strategy
and uses BSN to denoise the noisy image twice in succes-
sion, some small details in the image may be smoothed to
some extent. Over-smoothing of details is also a drawback
of many unsupervised methods. We still need to continue
to work on it, although the results of our method are better
than others. For the future work, we hope to obtain better
image details using the proposed self-supervised method.
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Figure 1: Overview of “n RSG + enhancement” for testing. RSG−1 is the inverse operator of RSG.
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Figure 2: The limitations of our method. It can be seen that
the denoising results of our method are relatively smooth to
some extent.
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Figure 3: Visual comparison on the SIDD validation dataset.
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Figure 4: Denoising examples from DND benchmark.


