Scanning Only Once: An End-to-end Framework for Fast Temporal Grounding in Long Videos

- Supplementary Material -

A. Qualitative Grounding Results

Recall that this work targets the temporal grounding in long videos. It proposes a tailored framework as well as training objectives, alleviating the inefficiency, insufficiency and inflexibility issues caused by the sliding window pipeline. We provide some qualitative results in Fig. 1 and Fig. 2 to illustrate the effectiveness of our method. They suggest, our method can achieve flexible boundary localization for various-length target segments. Besides, thanks to the content-enhanced re-ranking, some inconspicuous objects which usually perturbed by other frames can be detected (*e.g.*, the wooden ferry in the third sample of

Fig. 1), hence facilitates accurate temporal localization.

Despite the effectiveness, due to the fact that the sentence feature is pre-extracted considering efficiency, some word-to-object alignment may get lost. Here we provide some failure cases of our method in Fig. 3. We observe from top to bottom, our method misunderstands "skids", "a", "kerosene lanterns", "smoke", "soup", "carton" in turn. They suggest that, the lack of explicit token-level semantic alignment learning leads to inadequate semantic analysis to some extent, which is left as our future work.

Query	Video Id	Ground Truth	Top1 Prediction ✓
sitting at a crowded desk, stacked with manuscripts, a young man with dark curly hair and glasses answers telephones.	3007_A_THOUSAN D_WORDS	285.5s – 295.4s	285.3s – 294.7s
filled with snow dusted statues of hooded figures standing with their hands clasped and their heads bowed.	3033_HUGO	890.2s – 897.7s	890.4s – 898.2s
someone rides along a track to a wide river with a wooden ferry.	3085_TRUE_GRIT	2046.6s – 2052.8s	2046.6s – 2052.9s
she walks off.	0016_O_Brother_Wh ere_Art_Thou	5565.5s – 5568.9s	5565.5s – 5568.9s
the ford coupe pulls up in front of the house.	0050_Indiana_Jones_ and_the_last_crusade	1335.9s – 1340.5s	1335.9s – 1340.3s
a hazy orange sun rises above the teeming streets, slums and skyscrapers of mumbai.	1006_Slumdog_Milli onaire	833.9s – 840.2s	833.7s – 839.9s

Figure 1. Visualization of some qualitative results on MAD.

Query	Video Id	Ground Truth	Top1 Prediction ✓
what meat did i fry in the pan?	eb04561c-2ffd-4ea1- aab4-7cadc24db9f9	90.0s – 144.0s	98.5s – 149.4s
in what location did i last see the mitten?	ff6d3d52-dda5-46dd- 8515-b9b772933030	194.0s – 198.1s	192.8s – 197.9s
how many carrots did i pick?	fbc425c4-def6-49a7- 8b88-5d5d00b5524e	463.6s – 495.4s	466.9s – 493.8s
how many plates did i take from the top shelf?	404cc1c1-f7a0-4e16- 9a39-b8e2d5d9ae59	323.0s – 330.0s	323.5s – 329.6s
who did i interact with when i was standing?	e4a01f13-4f09-4ee4- ae13-17af72eaca87	0.0s – 3.0s	0.0s – 3.1s
what did i put in the plate?	224c3de4-9683-462a- 8eb4-224773425a7e	303.2s - 350.0s	311.5s – 346.3s

Figure 2. Visualization of some qualitative results on Ego4d-Video-NLQ.

Query	Video Id	Ground Truth	Top1 Prediction X
the dog skids across the polished floor as he runs up the hallway opposite the toyshop.	3033_HUGO	448.9s – 450.9s	1414.1s – 1422.2s
someone takes a complimentary coffee and leaves.	3007_A_THOUSA ND_WORDS	326.4s – 330.1s	1767.0s – 1770.8s
the light of kerosene lanterns dances on the tunnel walls ahead.	0050_Indiana_Jone s_and_the_last_cru sade	CORRECTIONS 597.3s — 598.0s	1336.7s – 1341.6s
the prisoner, someone, blinks rapidly as the smoke stings his eyes.	1006_Slumdog_Mil lionaire	84.6s – 90.2s	5786.2s – 5793.9s
what did i use to stir the soup?	413fe086-1745- 4573-b75b- e7d26ff72df9	0.2s - 5.0s	437.9s – 495.5s
where did i put carton?	38737402-19bd- 4689-9e74- 3af391b15feb	808.0s – 814.0s	1366.9s – 1369.7s

Figure 3. Visualization of some failure cases on MAD and Ego4d-Video-NLQ.