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A A Complete Recipe for SGMs

A.1 Proof of Theorems

A.1.1 Proof of Stationarity

Given a positive semi-definite diffusion matrix D(z) and a skew-symmetric matrix Q(z), we can
parameterize the drift f(z) for a stochastic process: dz = f(z)dt+

√
2D(z)dwt as follows:

f(z) = −(D(z) +Q(z))∇H + τ(z), τi(z) =
∑
j

∂

∂zj
(Dij(z) +Qij(z)) (30)

Theorem 2.1 then states that the distribution ps(z) ∝ exp (−H(z)) will be the stationary distribution
for the stochastic process as defined above.

Proof. Using the Fokker-Planck formulation for the stochastic dynamics, we have:

∂pt(z)

∂t
= −

∑
i

∂

∂zi
(fi(z)pt(z)) +

∑
i,j

∂2

∂zizj
(Dij(z)pt(z)) (31)

Furthermore, we have:

fi(z) = τi(z)−
∑
j

(Dij(z) +Qij(z))∇Hj(z) (32)

Therefore,∑
i

∂

∂zi
(fi(z)pt(z)) =

∑
i

∂

∂zi

[
τi(z)pt(z)−

∑
j

(Dij(z) +Qij(z))∇Hj(z)pt(z)

]
(33)

=
∑
i

∂

∂zi

[∑
j

∂

∂zj
(Dij(z) +Qij(z)) pt(z)−

∑
j

(Dij(z) +Qij(z))∇Hj(z)pt(z)

]
(34)

=
∑
i,j

∂

∂zi

[
∂

∂zj
(Dij(z) +Qij(z)) pt(z)

]
−
∑
i,j

∂

∂zi

[
(Dij(z) +Qij(z))∇Hj(z)pt(z)

]
(35)

=
∑
i,j

∂

∂zi

[
∂

∂zj
(Dij(z) +Qij(z)) pt(z)

]
−
∑
i,j

∂

∂zi

[
(Dij(z) +Qij(z))∇Hj(z)pt(z)

]
︸ ︷︷ ︸

=F (z)

(36)



Substituting the above result in the Fokker-Planck formulation in Eqn. 31, we have:

∂pt(z)

∂t
= F (z)−

∑
i,j

∂

∂zi

[
∂

∂zj
(Dij(z) +Qij(z)) pt(z)−

∂

∂zj
(Dij(z)pt(z))

]
(37)

= F (z)−
∑
i,j

∂

∂zi

[
∂

∂zj
(Qij(z)) pt(z)−Dij(z)

∂

∂zj
(pt(z))

]
(38)

= F (z)−
∑
i,j

∂

∂zi

[
∂

∂zj
(Qij(z)pt(z))− (Dij(z) +Qij(z))

∂

∂zj
(pt(z))

]
(39)

= F (z) +
∑
i,j

∂

∂zi

[
(Dij(z) +Qij(z))

∂pt(z)

∂zj

]
︸ ︷︷ ︸

=G(z)

−
∑
i,j

∂2

∂zi∂zj
(Qij(z)pt(z)) (40)

= F (z) +G(z)−
∑
i,j

∂2

∂zi∂zj
(Qij(z)pt(z)) (41)

Since Q(z) is a skew-symmetric matrix,
∑

i,j
∂2

∂zi∂zj
(Qij(z)pt(z)) = 0. Therefore,

∂pt(z)

∂t
= F (z) +G(z) (42)

=
∑
i,j

∂

∂zi

[
(Dij(z) +Qij(z))

(
∇Hj(z)pt(z) +

∂pt(z)

∂zj

)]
(43)

=
∑
i

∂

∂zi

[
(Di(z) +Qi(z))

(
∇H(z)pt(z) +

∂pt(z)

∂z

)]
(44)

= ∇ ·

[
(Di(z) +Qi(z))

(
∇H(z)pt(z) +

∂pt(z)

∂z

)]
(45)

Therefore, we have the following parameterization for the Fokker-Planck formulation for the defined
stochastic dynamics:

∂pt(z)

∂t
= ∇ ·

[
(Di(z) +Qi(z))

(
∇H(z)pt(z) +

∂pt(z)

∂z

)]
(46)

Substituting ps(z) ∝ exp (−H(z)) in the above result implies ∂pt(z)
∂t = 0. This implies that

ps(z) ∝ exp (−H(z)) is the form of the stationary distribution for the drift parameterization f(z) =
−(D(z) +Q(z))∇H + τ(z). An alternative version of this proof can be found in Ma et al. [1]

A.1.2 Proof of Completeness

We now state the proof for Theorem 2.2 which states that for every stochastic dynamics dz = f(z)dt+√
2D(z)dwt with the desired stationary distribution ps(z) ∝ exp (−H(z)), there exists a positive

semi-definite D(z) and a skew-symmetric Q(z) such that f(z) = −(D(z) + Q(z))∇H + τ (z)
holds. We directly include the proof from Ma et al. [1] for completeness.

Proof. We have the following result:

fi(z)ps(z) = τi(z)ps(z)−
∑
j

(Dij(z) +Qij(z))∇Hj(z)ps(z) (47)

=
∑
j

∂

∂zj
(Dij(z) +Qij(z)) ps(z)−

∑
j

(Dij(z) +Qij(z))∇Hj(z)ps(z) (48)

=
∑
j

∂

∂zj

[
(Dij(z) +Qij(z)) ps(z)

]
(49)
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which implies, ∑
j

∂

∂zj
(Qij(z)ps(z)) = fi(z)ps(z)−

∑
j

∂

∂zj
(Dij(z)ps(z)) (50)

Furthermore, from the Fokker-Planck formalism,

∂pt(z)

∂t
= −

∑
i

∂

∂zi
(fi(z)pt(z)) +

∑
i,j

∂2

∂zizj
(Dij(z)pt(z)) (51)

= −
∑
i

∂

∂zi

[
fi(z)pt(z)−

∑
j

∂

∂zj
(Dij(z)pt(z))

]
(52)

For pt(z) = ps(z), we have,∑
i

∂

∂zi

[
fi(z)pt(z)−

∑
j

∂

∂zj
(Dij(z)pt(z))

]
= 0 (53)

Denoting the Fourier transform of Q(z)ps(z) as Q̂(k) and the Fourier transform of fi(z)pt(z) −∑
j

∂
∂zj

(Dij(z)pt(z)) by F̂ (k), then from Eqns. 50 and 53 we have the following equations in the
Fourier-space:

2πiQ̂k = F̂ (54)

kT F̂ = 0 (55)

Therefore, it implies that the matrix Q̂ is a projection matrix from k to the span of F̂ . Consequently,
the matrix Q̂ can be constructed as: Q̂ = (2πi)−1 F̂ kT

kTk
− (2πi)−1 kF̂T

kTk
. This construction also shows

that Q̂ is skew-symmetric. Moreover, the skew-symmetric Q can be obtained by computing the
Inverse-Fourier transform of (ps(z))−1Q̂

A.2 Existing SGMs parameterized using the SGM recipe

In this section, we provide examples of SGMs that can be cast under the recipe proposed in Section
2.2. It is worth noting that under the completeness framework proposed in Section 2.2, given a positive
semi-definite diffusion matrix D(z), a skew-symmetric curl matrix Q(z) and the Hamiltonian H(z)
corresponding to a specified target distribution ps(z), the forward process SDE can be parameterized
in terms of the target distribution as follows:

H(z) = U(x) +
mTM−1m

2
, ∇H(z) =

(
∇U(x)
M−1m

)
(56)

f(z) = −(D(z) +Q(z))

(
∇U(x)
M−1m

)
+ τ(z) (57)

dz = f(z)dt+
√
2D(z)dwt (58)

We now recast several existing SGMs under this framework:

A.2.1 Non-augmented SGMs

For SGMs with a non-augmented form, we assume auxiliary variables mt = 0 with the equilibrium
distribution given by ps(z) = N (0d, Id). The Hamiltonian and its gradient can then be specified as
follows:

H(z) =
xTx

2
, ∇H(z) = x (59)

For the choice of DVP(z) =
βt

2 Id and QVP(z) = 0d, the drift for the forward SDE defined in Eqn.
57 reduces to the following form:

dx = −βt

2
xdt+

√
βtdwt (60)
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where βt is a time-dependent constant. The forward SDE in Eqn. 60 is the same as the VP-SDE
proposed in [2]. From our recipe, the stationary distribution for the VPSDE should be ps(x) =
N (0d, Id). Indeed the perturbation kernel for the VP-SDE is specified as follows:

p(xt|x0) = N (x0e
− 1

2

∫ t
0
β(s)ds, (1− e−

∫ t
0
β(s)ds)2Id) (61)

which converges to a standard Gaussian distribution as t → ∞. This example suggests that the
proposed recipe can be used to establish the validity of the convergence of a forward process with a
specified stationary distribution ps(z) without deriving the perturbation kernel or relying on physical
intuition. Interestingly, the Variance-Exploding (VE) SDE [2] is one example that cannot be cast in
our framework. This would mean that it will not asymptotically converge to the standard Gaussian
distribution at equilibrium. Indeed, this can be confirmed from the analytical form of the perturbation
kernel of the VE-SDE given by:

p(xt|x0) = N (x0, [σ
2(t)− σ2(0)]Id) (62)

As t → ∞, the variance of the perturbation kernel of the VE-SDE grows unbounded and therefore
does not converge to the equilibrium distribution N (0d, Id). This should not be surprising since the
VE-SDE, for the specified hamiltonian, could not be recast in the completeness framework, to begin
with.

A.2.2 Augmented SGMs

For SGMs with an augmented state-space (data state space xt + auxiliary variables mt), we assume
the equilibrium distribution ps(z) = N (0d, Id)N (0d,MId). The Hamiltonian and its gradient can
then be specified as follows:

H(z) =
xTx

2
+

mTM−1m

2
, ∇H(z) =

(
x

M−1m

)
(63)

For this choice of H , the forward SDE representative of PSLD can be obtained by choosing the
following D and Q matrices:

DPSLD =
β

2

((
Γ 0
0 Mγ

)
⊗ Id

)
QPSLD =

β

2

((
0 −1
1 0

)
⊗ Id

)
(64)

Similarly, the forward SDE representative of CLD [3] can be obtained by choosing:

DCLD = β

((
0 0
0 Γ

)
⊗ Id

)
QCLD = β

((
0 −1
1 0

)
⊗ Id

)
(65)

Since both PSLD and CLD can be shown to converge asymptotically to ps(z) from the analytical
form of their perturbation kernels p(zt|z0), the result from our completeness framework is valid.
More importantly, given a forward process for an SGM, our recipe can be used to validate if the SGM
converges to a specified equilibrium distribution without the need for analytically determining the
perturbation kernel (which is usually non-trivial).

B Phase Space Langevin Diffusion

In this section, we elaborate on several aspects of PSLD, which were discussed briefly in the main
text. Moreover, we work with the following form of the forward process for PSLD:(

dxt

dmt

)
=

(
βt

2

(
−Γ M−1

−1 −ν

)
⊗ Id

) (
xt

mt

)
dt+

((√
Γβt 0
0

√
Mνβt

)
⊗ Id

)
dwt, (66)

It is worth noting that the form of the forward process defined in Eqn. 66 is more general than Eqn.
12 in the sense that we consider a time-dependent βt here for our discussions. We can then reason
about the forward SDE in Eqn. 12 by fixing βt to a time-independent quantity β for all subsequent
analyses.
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B.1 Critical Damping in PSLD

Assuming βt = 1 and xt,mt ∈ R for simplicity, the equations of motion for the deterministic
dynamics can be specified as follows:

dxt

dt
= −Γxt +M−1mt (67)

dmt

dt
= −xt − νmt (68)

From Eqn. 67, we have:

mt = M

(
dxt

dt
+ Γxt

)
(69)

Furthermore, taking the derivative of both sides in Eqn. 67, we have:

d2xt

dt2
= −Γ

dxt

dt
+M−1 dmt

dt
(70)

= −Γ
dxt

dt
+M−1 [−xt − νmt] (71)

= −Γ
dxt

dt
+M−1

[
−xt − νM

(
dxt

dt
+ Γxt

)]
(72)

= −Γ
dxt

dt
−M−1xt − ν

(
dxt

dt
+ Γxt

)
(73)

= −Γ
dxt

dt
−M−1xt − ν

dxt

dt
− Γνxt (74)

= −(Γ + ν)
dxt

dt
−M−1xt − Γνxt (75)

We, therefore, have the following dynamical equation in terms of the position:

d2xt

dt2
+ (Γ + ν)

dxt

dt
+ (M−1 + Γν)xt = 0 (76)

Assuming the exponential ansatz xt = exp (−λt) and plugging into the above ODE, we have the
following result:

exp (−λt)
[
λ2 − (Γ + ν)λ+ (M−1 + Γν)

]
= 0 (77)

which implies,
λ2 − (Γ + ν)λ+ (M−1 + Γν) = 0 (78)

λ =
(Γ + ν)±

√
(Γ + ν)2 − 4M−1 − 4Γν

2
(79)

λ =
(Γ + ν)±

√
(Γ− ν)2 − 4M−1

2
(80)

Corresponding to the value of ν,Γ and M , we can now have the following damping conditions:

(i) (Γ− ν)2 < 4M−1 corresponds to Underdamped dynamics

(ii) (Γ− ν)2 = 4M−1 corresponds to Critical damping

(iii) (Γ− ν)2 > 4M−1 corresponds to Overdamped dynamics

Moreover when Γ = 0 and ν̄ = Mν, we get: ν̄2 = 4M which is the critical damping condition
proposed in Dockhorn et al. [3]. Therefore, similar to Dockhorn et al. [3], we work in the Critical
Damping regime specified by the condition (Γ− ν)2 = 4M−1
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B.2 PSLD Training

B.2.1 Overall Training Framework in PSLD

Following the derivation in Dockhorn et al. [3], the maximum likelihood training formulation for
score matching can be specified as follows. Let p0, q0 be two densities with corresponding marginal
densities pt and qt (for forward diffusion using PSLD defined in Eqn. 66) at time t. As shown in Song
et al. [4], the KL-Divergence between p0 and q0 can then be expressed as a mixture of score-matching
losses over multiple time scales as follows:

DKL(p0 ∥ q0) = DKL(p0 ∥ q0)−DKL(pT ∥ qT ) +DKL(pT ∥ qT )

= −
∫ T

0

∂DKL(pt ∥ qt)

∂t
dt+DKL(pT ∥ qT )

(81)

Following the derivation from Song et al. [4], the Fokker-Planck equation describing the time
evolution of the probability density function of the SDE in Eqn. 66 can be expressed as follows:

∂pt(zt)

∂t
= ∇zt ·

[
1
2

(
G(t)G(t)⊤ ⊗ Id

)
∇ztpt(zt)− pt(zt)(f(t)⊗ Id)zt

]
= ∇zt

· [hp(zt, t)pt(zt)]
(82)

where
hp(zt, t) :=

1
2

(
G(t)G(t)⊤ ⊗ Id

)
∇zt

log pt(zt)− (f(t)⊗ Id)zt (83)

f(t) =

(
βt

2

(
−Γ M−1

−1 −ν

))
(84)

G(t) =

(√
Γβt 0
0

√
Mνβt

)
(85)

Further assuming that log pt(zt) and log qt(zt) are smooth functions with at most polynomial growth
at infinity, we have

lim
zt→∞

hp(zt, t)pt(zt) = lim
zt→∞

hq(zt, t)qt(zt) = 0. (86)

Using the above fact, we can compute the time-derivative of the Kullback–Leibler divergence between
pt and qt as

∂DKL(pt ∥ qt)

∂t
=

∂

∂t

∫
pt(zt) log

pt(zt)

qt(zt)
dzt

=

∫
∂pt(zt)

∂t
log

pt(zt)

qt(zt)
dzt −

∫
pt(zt)

qt(zt)

∂qt(zt)

∂t
dzt

= −
∫

pt(zt)
[
hp(zt, t)− hq(zt, t)

]⊤[
∇zt

log pt(zt)−∇zt
log qt(zt)

]
dzt

= −1

2

∫
pt(zt)

[
∇zt

log pt(zt)−∇zt
log qt(zt)

]⊤(
G(t)G(t)⊤ ⊗ Id

)
[
∇ut log pt(zt)−∇zt log qt(zt)

]
dzt

= −1

2

∫
pt(zt)

[
Γβt∥∇xt

log pt(zt)−∇xt
log qt(zt)∥22+

Mνβt∥∇mt
log pt(zt)−∇mt

log qt(zt)∥22
]
dzt

(87)

Assuming our generative prior p(xT ) matches the equilibrium state of the forward process closely
i.e. DKL(pT ∥ qT ) ≈ 0 and substituting the result in Eqn. 87 in Eqn. 81, we get the following
score-matching objective corresponding to the maximum-likelihood objective in Eqn. 81 as follows:

DKL(p0 ∥ q0) =
1

2
Et∼U(0,T )Ezt∼pt(zt)

[
Γβt

∥∥∇xt
log pt(zt)−∇xt

log qt(zt)
∥∥2
2︸ ︷︷ ︸

Data-Space

+

Mνβt

∥∥∇mt log pt(zt)−∇mt log qt(zt)
∥∥2
2︸ ︷︷ ︸

Momentum-Space

] (88)
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In general, the above score-matching loss can be re-formulated using arbitrary loss weightings λ1(t)
and λ2(t) as follows:

DKL(p0 ∥ q0) =
1

2
Et∼U(0,T )Ezt∼pt(zt)

[
λ1(t)

∥∥∇xt
log pt(zt)−∇xt

log qt(zt)
∥∥2
2
+

λ2(t)
∥∥∇mt

log pt(zt)−∇mt
log qt(zt)

∥∥2
2

] (89)

Choosing the same weighting for both loss components i.e. λ1(t) = λ2(t) = λ(t), the score-matching
objective in Eqn. 88 can be simplified as follows:

LSM =
1

2
Et∼U(0,T )Ezt∼pt(zt)

[
λ(t)

∥∥∇zt log pt(zt)−∇zt log qt(zt)
∥∥2
2

]
(90)

Approximating the score ∇zt
log qt(zt) using a parametric estimator sθ(zt, t) and following Vincent

[5], it can be shown that the LSM objective is equivalent to the following Denoising Score Matching
(DSM) objective:

LDSM =
1

2
Et∼U(0,T )Ez0∼p(z0)Ezt∼pt(zt|z0)

[
λ(t)

∥∥∇zt
log pt(zt|z0)− sθ(zt, t)

∥∥2
2

]
(91)

Moreover, Dockhorn et al. [3] propose to use the following objective a.k.a. Hybrid Score Matching
(HSM), which is equivalent to the DSM objective (upto a constant independent of θ):

LHSM =
1

2
Et∼U(0,T )Ex0∼p(x0)Ezt∼pt(zt|x0)

[
λ(t)

∥∥∇zt
log pt(zt|x0)− sθ(zt, t)

∥∥2
2

]
(92)

The perturbation kernels p(zt|z0) and p(zt|x0) can be computed analytically for an SDE with
affine drift (See Appendix B.3 for the exact analytical forms of the perturbation kernel for PSLD).
Following Dockhorn et al. [3], we use the Hybrid Score Matching (HSM) objective throughout this
work. We next discuss the computation of the analytical form of the target score ∇zt

log pt(zt|x0)
(or ∇zt

log pt(zt|z0) for DSM) and the parameterization of our score network sθ(zt, t).

B.2.2 Analytical Score Computation and Parameterization

In cases when the perturbation kernels are multivariate Gaussian distributions of the form N (µt,Σt),
the target score ∇zt

log pt(zt|x0) can be computed analytically as follows:

∇zt log p(zt|x0) = −Σ−1
t (zt − µt) (93)

= −L−T
t L−1

t (Ltϵ) = −L−T
t ϵ (94)

where ϵ ∼ N (02d, I2d) and Σt = LtL
T
t is the Cholesky decomposition. Moreover, for Σt =((

Σxx
t Σxm

t
Σxm

t Σmm
t

)
⊗ Id

)
(as is the case in PSLD), the Cholesky decomposition can be computed

analytically as follows:

Lt =

((
Lxx
t 0

Lxm
t Lmm

t

)
⊗ Id

)
(95)

Lt =

(
Lxx
t 0

Lxm
t Lmm

t

)
=

√
Σxx

t 0
Σxm

t√
Σxx

t

√
Σxx

t Σmm
t −(Σxm

t )2

Σxx
t

 (96)

Consequently,

L−T
t = L−T

t ⊗ Id

=

√
Σxx

t
Σxm

t√
Σxx

t

0
√

Σxx
t Σmm

t −(Σxm
t )2

Σxx
t

−1

⊗ Id

=

 1√
Σxx

t

−Σxm
t√

Σxx
t

√
Σxx

t Σmm
t −(Σxm

t )2

0
√

Σxx
t

Σxx
t Σmm

t −(Σxm
t )2

⊗ Id.

(97)
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Plugging the analytical form of L−T
t into Eqn. 94, we get the following analytical form of the target

score ∇zt log pt(zt|x0):

∇zt
log pt(zt|x0) = −L−T

t ϵ (98)

= −
((

lxxt lxmt
0 lmm

t

)
⊗ Id

)(
ϵx
ϵm

)
(99)

= −
(
lxxt ϵx + lxmt ϵm

lmm
t ϵm

)
(100)

where lxxt = 1√
Σxx

t

, lxmt =
−Σxm

t√
Σxx

t

√
Σxx

t Σmm
t −(Σxm

t )2
and lmm

t =
√

Σxx
t

Σxx
t Σmm

t −(Σxm
t )2

. While one

can directly model the score as defined in Eqn. 100, we instead parameterize the score network as
sθ(zt, t) = −L−T

t ϵθ(zt, t).

B.2.3 Putting it all together

Plugging the analytical form of ∇zt
log pt(zt|x0) and our score network parameterization sθ(zt, t) =

−L−T
t ϵθ(zt, t) in the HSM objective in Eqn. 92, we get the following objective:

LHSM =
1

2
Et∼U(0,T )Ex0∼p(x0)Ezt∼pt(zt|x0)

[
λ(t)

∥∥∇zt
log pt(zt|x0)− sθ(zt, t)

∥∥2
2

]
(101)

=
1

2
Et∼U(0,T )Ex0∼p(x0)Eϵ∼N (02d,I2d)

[
λ(t)

∥∥L−T
t ϵ−L−T

t ϵθ(µt +Ltϵ, t)
∥∥2
2

]
(102)

≤ 1

2
Et∼U(0,T )Ex0∼p(x0)Eϵ∼N (02d,I2d)

[
λ(t)

∥∥L−T
t

∥∥2
2

∥∥ϵ− ϵθ(µt +Ltϵ, t)
∥∥2
2

]
(103)

It is worth noting that since our original HSM objective is upper bounded by the objective in Eqn.
103, minimizing the latter also minimizes LHSM. Since we optimize for sample quality, following
prior work [2, 3], we choose λ(t) = 1

∥L−T
t ∥2

2

to cancel the weighting induced by ∥L−T
t ∥22. Our final

training objective reduces to the following noise-prediction formulation:

L(θ) = 1

2
Et∼U(0,T )Ex0∼p(x0)Eϵ∼N (02d,I2d)

[∥∥ϵ− ϵθ(µt +Ltϵ, t)
∥∥2
2

]
(104)

It is worth noting that in our training setup, we need to predict the full 2d-dimensional ϵ. This is in
contrast to the training setup in CLD, where we only need to predict the last-d components i.e. ϵd:2d
of the noise vector ϵ. This difference in training arises due to different formulations of the diffusion
coefficient in PSLD and CLD. Indeed, setting Γ = 0 in Eqn. 88 would result in a similar training
objective as in CLD.

B.3 Perturbation Kernel in PSLD

We now present the analytical form of the perturbation kernels p(zt|z0) and p(zt|x0) for PSLD,
which are required for training using DSM or HSM respectively.

B.3.1 Mean and Variance of p(zt|z0)

Since the drift and the diffusion coefficients in Eqn. 66 are affine, the perturbation kernel p(zt|z0)
will be a multivariate Gaussian distribution N (µt,Σt). Following Särkkä and Solin [6], µt and Σt,
evolve as the following ODEs:

dµt

dt
= F (t)µt (105)

dΣt

dt
= F (t)Σt +ΣtF

T (t) +G(t)G(t)T (106)

where F (t) =

(
βt

2

(
−Γ M−1

−1 −ν

)
⊗ Id

)
and G(t) =

((√
Γβt 0
0

√
Mνβt

)
⊗ Id

)
for PSLD.

Under critical damping i.e. M−1 = (Γ−ν)2

4 , solving the ODEs for the mean and variance yields the
following form of p(zt|z0) = N (µt,Σt):
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µt =

(
µx

t
µm

t

)
=

(
A1B(t)x0 +A2B(t)m0 + x0

C1B(t)x0 + C2B(t)m0 +m0

)
e−( ν+Γ

4 )B(t) (107)

where B(t) =
∫ t

0
β(s)ds and coefficients:

A1 =
ν − Γ

4
A2 =

(Γ− ν)2

8
(108)

C1 =
−1

2
C2 =

Γ− ν

4
(109)

The variance Σt for the perturbation kernel p(zt)z0 is given by:

Σt =

((
Σxx

t Σxm
t

Σxm
t Σmm

t

)
e−(Γ+ν

2 )B(t)

)
⊗ Id (110)

where,

Σxx
t = A1B2(t)Σxx

0 +A2B2(t)Σmm
0 +A3B(t)Σxx

0 +A4B2(t) +A5B(t) + (e2λB(t) − 1) + Σxx
0

(111)

Σxm
t = C1B2(t)Σxx

0 + C2B2(t)Σmm
0 + C3B(t)Σxx

0 + C4B(t)Σmm
0 + C5B2(t) (112)

Σmm
t = D1B2(t)Σxx

0 +D2B2(t)Σmm
0 +D3B(t)Σmm

0 +D4B2(t) +D5B(t) +M(e2λB(t) − 1) + Σmm
0

(113)

where Σ0 =

(
Σxx

0 0
0 Σmm

0

)
, B(t) =

∫ t

0
β(s)ds and coefficients:

A1 =
M−1

4
A2 =

M−2

4
A3 =

ν − Γ

2
A4 =

−M−1

2
A5 =

Γ− ν

2
(114)

C1 =
Γ− ν

8
C2 =

(Γ− ν)3

32
C3 =

−1

2
C4 =

M−1

2
C5 =

ν − Γ

4
(115)

D1 =
1

4
D2 =

M−1

4
D3 =

Γ− ν

2
D4 =

−1

2
D5 =

M(ν − Γ)

2
(116)

It is worth noting that, when Γ = 0, ν̄ = Mν and β̄(t) = β(t)
2 such that B(t) = 2B̄(t) where

B̄(t) =
∫ t

0
β̄(s)ds, we have the following form of the mean µt:

µt =

(
2ν̄−2B̄(t)x0 + 4ν̄−2B̄(t)m0 + x0

−B̄(t)x0 − 2ν̄−1B̄(t)m0 +m0

)
e−2ν̄−1B̄(t) (117)

The expression for µt in Eqn. 117 is exactly the same as the mean of the perturbation kernel for CLD
(Refer to Appendix B.1 in Dockhorn et al. [3]). A similar analysis holds for the variance Σt which
provides more insight into CLD being a special case of PSLD. Similar to CLD, at t = 0, we have

µ0 =

(
x0

m0

)
, where x0 ∼ p(x0) (a.k.a the data generating distribution) and m0 ∼ N (0d,MγId),

where γ is a scalar hyperparameter. Similarly, for DSM training, both Σxx
0 and Σmm

0 can be set to 0
(since zt = [xt,mt]

T is a sample based estimate).

B.3.2 Mean and Variance of p(zt|x0)

Since the data generating distribution for m0 and the DSM perturbation kernel p(zt|z0) are mul-
tivariate Gaussians, we can marginalize out the initial momentum variables m0 from p(zt|z0) to
obtain the perturbation kernel for HSM as p(zt|x0) =

∫
p(zt|x0,m0)p(m0)dm0. Consequently, the

perturbation kernel p(zt|x0) can be obtained by setting m0 = 0d and Σmm
0 = Mγ in the expressions

of µt and Σt for p(zt|z0).
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B.3.3 Convergence

As t → ∞, the mean µt converges to 02d since the multiplicative term e−( ν+Γ
4 )B(t) goes to 0.

Similarly, the covariance for the perturbation kernel converges to the following case:

Σxx
e = lim

t→∞
Σxx

t e−(Γ+ν
2 )B(t) = 1 (118)

Σxm
e = lim

t→∞
Σxm

t e−(Γ+ν
2 )B(t) = 0 (119)

Σmm
e = lim

t→∞
Σmm

t e−(Γ+ν
2 )B(t) = M (120)

Therefore, the perturbation kernel converges to the following steady-state distribution pEQ(z) =
N (x;0d, Id)N (m;0d,MId). It is worth noting that this is the exact equilibrium distribution that
we specified in our SGM recipe to construct the forward process for PSLD.

B.4 PSLD Sampling

The reverse SDE analogous to the forward SDE defined in Eqn. 66 can be formulated as follows [2]:

dz̄t = f̄(z̄t)dt+G(T − t)dw̄t (121)

f̄(z̄t) =
βt

2

(
Γx̄t −M−1m̄t + 2Γsθ(z̄t, T − t)|0:d
x̄t + νm̄t + 2Mνsθ(z̄t, T − t)|d:2d)

)
, G(T − t) =

(√
Γβt 0
0

√
Mνβt

)
⊗Id

(122)

where z̄t = zT−t, x̄t = xT−t, m̄t = mT−t. Given an estimate of the score sθ(zt, T − t), one
can simulate the above SDE to generate data from noise. Given z̄0 =

(
x̄0, m̄0

)T ∼ pEQ(z) =
N (x;0d, Id)N (m;0d,MId), we now discuss update steps for different samplers in context of
PSLD.

B.4.1 Euler-Maruyama (EM) Sampler

The EM update step for the reverse SDE corresponding to PSLD are as follows:(
x̄t′

m̄t′

)
=

(
x̄t

m̄t

)
+

βtδt

2

(
Γx̄t −M−1m̄t + 2Γsθ(z̄t, T − t)|0:d
x̄t + νm̄t + 2Mνsθ(z̄t, T − t)|d:2d)

)
+

( √
Γβtδtϵ

x
t′√

Mνβtδtϵ
m
t′

)
(123)

where ϵt = [ϵxt , ϵ
m
t ]T ∼ N (02d, I2d) and t′ = t+ δt where δt is the step size for a single update.

B.4.2 Symmetric Splitting CLD Sampler (SSCS)

Inspired by the application of splitting-based integrators in molecular dynamics [7], Dockhorn et al.
[3] proposed the SSCS sampler with the following symmetric splitting scheme:(

dx̄t

dm̄t

)
=

βt

2

(
−Γx̄t −M−1m̄t

x̄t − νm̄t

)
dt+G(T − t)dw̄t︸ ︷︷ ︸

A

+βt

(
Γx̄t + Γsθ(z̄t, T − t)|0:d

νm̄t +Mνsθ(z̄t, T − t)|d:2d

)
dt︸ ︷︷ ︸

S

(124)
Dockhorn et al. [3] then approximate the flow map for the original SDE by the application of the
following symmetric splitting schedule [8, 9]:

et(LA+LS) ≈
[
e

δt
2 L∗

AeδtL
∗
Se

δt
2 L∗

A

]N
+O(Nδt3) (125)

where N = t
δt . The solution z̄t for the reverse SDE at any time t can then be obtained by the

application of the flow map approximation of et(LA+LS) to z̄0. Since we use the same splitting
formulation as Dockhorn et al. [3], the modified SSCS sampler for PSLD is still a first-order integrator
sampler (Also see Appendix D in Dockhorn et al. [3] for more analysis of the SSCS sampler as
proposed for CLD). However, since the form of the analytical splitting component in Eqn. 124 is
different from CLD (due to a non-zero Γ), we next discuss the solution for this analytical form.
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Analytical splitting-term: We have the following analytical splitting term:(
dx̄t

dm̄t

)
=

βt

2

(
−Γx̄t −M−1m̄t

x̄t − νm̄t

)
dt+

((√
Γβt 0
0

√
Mνβt

)
⊗ Id

)
dw̄t (126)

The solution for this analytical SDE is similar to the derivation of the perturbation kernel in Appendix
B.3. However, there are two key differences. Firstly, we need to integrate between time-intervals
(t, t+ δt) as opposed to from (0, t) for the perturbation kernel. Secondly, since we are sampling, we
set the initial covariances Σt

xx and Σt
mm to zero. The analytical solution for the SDE in Eqn. 126 can

then be specified as follows:

z̄t ∼ N (µ̄t, Σ̄t) (127)

where

µ(x̄t, m̄t, t, t
′) =

(
A1B(t, t′)x̄t +A2B(t, t′)m̄t + x̄t

C1B(t, t′)x̄t + C2B(t, t′)m̄t + m̄t

)
e−( ν+Γ

4 )B(t,t′) (128)

A1 =
ν − Γ

4
A2 =

−(Γ− ν)2

8
(129)

C1 =
1

2
C2 =

Γ− ν

4
(130)

The solution for the covariance is given by the following expression:

Σ(t, t′) =

((
Σxx

t,t′ Σxm
t,t′

Σxm
t,t′ Σmm

t,t′

)
e−(Γ+ν

2 )B(t,t′)

)
⊗ Id (131)

where,

Σxx
t = − (Γ− ν)2

8
B2(t, t′) +

(Γ− ν)

2
B(t, t′) + (e−(Γ+ν

2 )B(t,t′) − 1) (132)

Σxm
t =

(Γ− ν)

4
B2(t, t′) (133)

Σmm
t = −1

2
B2(t, t′) +

M(Γ− ν)

2
B(t, t′) +M(e−(Γ+ν

2 )B(t,t′) − 1) (134)

where B(t, t′) = −
∫ t′

t
β(s)ds and t′ = t + δt. Indeed, setting Γ = 0 recovers the original SSCS

algorithm proposed in Dockhorn et al. [3]. Therefore, given z̄t =
(
x̄t, m̄t

)T

, the flow map update

for the analytical splitting term e
δt
2 L∗

A is given by:

z̄t′ ∼ N (µ(x̄t, m̄t, t, t
′),Σ(t, t′)) (135)

where t′ = t+ δt
2 .

Score-based splitting term: The flow map update for the score-based splitting term eδtL
∗
S is given

by an Euler update as follows:(
x̄t′

m̄t′

)
=

(
x̄t

m̄t

)
+ δtβt

(
Γx̄t + Γsθ(z̄t, T − t)|0:d

νm̄t +Mνsθ(z̄t, T − t)|d:2d

)
(136)

Combining the two splitting terms together, a more generic form of the SSCS algorithm can be
specified as follows:
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Algorithm 1 Modified SSCS (Terms in blue indicate differences from the SSCS sampler proposed in
Dockhorn et al. [3])

Input: Trajectory length T, Score function sθ(zt, T − t), PSLD parameters Γ, ν, βt, M = (Γ−ν)2

4
, number

of sampling steps N , step sizes {δtn ≥ 0}N−1
n=0 spanning the interval (0, T − ϵ).

Output: z̄T = (x̄T , m̄T )

x̄0 ∼ N (0d, Id), m̄0 ∼ N (0d,MId), z̄0 = (x̄0, m̄0) ▷ Draw initial prior samples from pEQ(u)
t = 0 ▷ Initialize time
for n = 0 to N − 1 do

z̄n+ 1
2
∼ N (µ(x̄n, m̄n, t, t+

δtn
2
),Σ(t, t+ δtn

2
)) ▷ First half-step: Apply exp{ δtn

2
L̂∗

A}

z̄n+ 1
2
← z̄n+ 1

2
+ δtnβt

(
Γx̄n+ 1

2
+ Γsθ(z̄n+ 1

2
, T − t)|0:d

νm̄n+ 1
2
+Mνsθ(z̄n+ 1

2
, T − t)|d:2d

)
▷ Full step: Apply exp{δtnL̂∗

S}

z̄n+1 ∼ N (µ(x̄n+ 1
2
, m̄n+ 1

2
, t, t+ δtn

2
),Σ(t, t+ δtn

2
)) ▷ Second half-step: Apply exp{ δtn

2
L̂∗

A}
t← t+ δtn ▷ Update time

end for
z̄N ← z̄N + ϵβt

2

(
Γx̄n+1 −M−1m̄n+1 + 2Γsθ(z̄n+1, ϵ)|0:d
x̄n+1 + νm̄n+1 + 2Mνsθ(z̄n+1, ϵ)|d:2d)

)
▷ Denoising

(x̄N , m̄N ) = z̄N ▷ Extract output data and momentum samples

B.4.3 Probability Flow ODE

Following Song et al. [2], the probability flow ODE for PSLD can be specified as follows:

dz̄t = f̄(z̄t)dt (137)

f̄(z̄t) =
βt

2

(
Γx̄t −M−1m̄t + Γsθ(z̄t, T − t)|0:d
x̄t + νm̄t +Mνsθ(z̄t, T − t)|d:2d)

)
(138)

The Probability-Flow ODE can be solved using any fixed/adaptive step-size black-box ODE solvers
like RK45 [10]

C Implementation Details

C.1 Datasets and Preprocessing

We use CIFAR-10 [11] (50k images) and CelebA-64 (≈ 200k images) [12] datasets for both quantita-
tive and qualitative analysis. We use the AFHQv2 [13] dataset (≈ 14k images) only for qualitative
analysis. Unless specified otherwise, we always use the CelebA dataset at 64x64 resolution and the
AFHQv2 dataset at 128 x 128 resolution. During training, all datasets are preprocessed to a numerical
range of [-1, 1]. Following prior work, we use random horizontal flips to train all models (ablation
and SOTA) across datasets as a data augmentation strategy.

C.2 Score Network Architecture

Table 7 illustrates our score model architectures for different datasets. Our network architectures are
largely based on the design of the DDPM++/NCSN++ score networks introduced in Song et al. [2].
Apart from minor design choices, the DDPM++/NCSN++ score-network architectures are primarily
based on the U-Net [14] model. We further highlight several key aspects of our score network
architectures across different datasets as follows:

CIFAR-10: We use a smaller version (39M) of the DDPM++ architecture (with the number of
residual blocks per resolution set to two) for ablation studies (for both VP-SDE and PSLD) while we
use the NCSN++ architecture [2] for training larger models used for SOTA comparisons. Moreover,
when training larger models, like Karras et al. [15] we remove the layers at 4x4 resolution and
re-distribute capacity to the layers at the 16x16 resolution. This results in model sizes of 55M/97M
parameters corresponding to four and eight residual blocks per resolution, respectively, with channel
multipliers [2,2,2]. Moreover, when training larger models (55M/97M), we slightly increase the
dropout rate from 0.1 to 0.15. We observed that these changes improved performance slightly while
reducing model sizes and enabling faster training.
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CIFAR-10 CelebA-64 AFHQv2

Hyperparameter SOTA Ablation SOTA Ablation Qualitative

Base channels 128 128 128 128 128
Channel multiplier [2,2,2] [1,2,2,2] [1,2,2,2] [1,1,2,2,2] [1,2,2,2,3]
# Residual blocks 4,8 2 4 4 2
Non-Linearity Swish Swish Swish Swish Swish
Attention resolution [16] [16] [16] [16] [16]
# Attention heads 1 1 1 1 1
Dropout 0.15 0.1 0.1 0.1 0.2
Finite Impulse Response (FIR) [16] True False True False False
FIR kernel [1,3,3,1] N/A [1,3,31] N/A N/A
Progressive Input Residual None Residual None None
Progressive Combine Sum Sum Sum Sum Sum
Embedding type Fourier Positional Fourier Positional Positional
Sigma scaling False False False False False
Model size 55M/97M 39M 62M 66M 68M

Table 7: Score Network hyperparameters for PSLD.

CelebA-64: Similar to CIFAR-10, we use a DDPM++ score model architecture for ablation experi-
ments. while we use a NCSN++ architecture for SOTA comparisons. Moreover, we remove the 4x4
layers from our ablation model for SOTA analysis and increase the channel multiplier for the 32x32
layers from 1 to 2. The dropout rate is set to 0.1 due to a larger dataset size for CelebA-64. This
setting results in a model size of approximately 66M for the ablation experiments and 62M for SOTA
comparisons.

AFHQv2: We use the original DDPM++ architecture for training our AFHQv2 model. Additionally,
we increase the dropout rate to 0.2, given a relatively smaller dataset size. This setting results in a
model size of approximately 68M parameters for qualitative analysis.

C.3 SDE Parameters

PSLD: For PSLD (including the CLD baseline), unless specified otherwise, we set the mass parameter
M−1 = 4 and β = 8. The choice of these parameters is motivated by empirical results presented in
Dockhorn et al. [3]. We add a stabilizing numerical epsilon value of 1e−9 in the diagonal entries of
the Cholesky decomposition of Σt when sampling the perturbed data-point zt ∼ N (µt,Σt) during
training. The data-generating distribution is set to p0(z) = N (0d, Id)N (0d,MγId) where γ = 0.04.
For SOTA analysis, we experiment with Γ ∈ {0.01, 0.02} for CIFAR-10 and Γ = 0.005 for the
CelebA-64 datasets. We chose these values of Γ and ν based on the best-performing (in terms of FID)
ablation models for these datasets (See Table 4 in the main text). Lastly, for training our AFHQv2
model for qualitative analysis, we set Γ = 0.01. All the other SDE parameters remain the same.

VP-SDE: For our VP-SDE baseline, following Song et al. [2], we set βmin = 0.1 and βmax = 20.0

C.4 Training

Table 8 summarizes the different training hyperparameters across datasets and evaluation settings (ab-
lation and SOTA). Additionally, we use the Hybrid Score Matching (HSM) objective (See Appendix
B.2.1) for all augmented state-space models (PSLD and CLD); for the VP-SDE baseline, we use the
Denoising Score Matching (DSM) objective. Throughout this work, we optimize for sample quality
and thus use the epsilon-prediction loss during training (See Appendix B.2.1).

C.5 Evaluation

SDE Sampling: As is common in prior works [2, 3], we use the integration interval (1e−3, 1.0)
for solving the reverse SDE/ODE for sample generation. Unless specified otherwise, we use 1000
sampling steps when using numerical SDE solvers. When using numerical black-box ODE solvers,
we use the RK-45 [10] solver with the same absolute and relative tolerance levels. We use the ODE
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CIFAR-10 CelebA-64 AFHQv2

SOTA Ablation SOTA Ablation Qualitative

Random Seed 0 0 0 0 0
# iterations 800k 800k 800k 320k 400k
Optimizer Adam Adam Adam Adam Adam
Grad Clip. cutoff 1.0 1.0 1.0 1.0 1.0
Learning rate (LR) 2e-4 2e-4 2e-4 2e-4 1e-4
LR Warmup steps 5000 5000 5000 5000 5000
FP16 False False False False False
EMA Rate 0.9999 0.9999 0.9999 0.9999 0.9999
Effective Batch size 128 128 128 128 64
# GPUs 8 4 8 4 8
Train eps cutoff 1e-5 1e-5 1e-5 1e-5 1e-5

Table 8: Training hyperparameters for PSLD

CIFAR-10 AFHQ-v2

Training

Random Seed 0 0
# iterations 200k 70k
Optimizer Adam Adam

LR 2e-4 2e-4
Warmup steps 5000 5000

FP16 False False
Batch size 256 64
# GPUs 4 4

Train eps cutoff 1e-5 1e-5

SDE

M−1 4.0 4.0
Γ 0.01 0.01
ν 4.01 4.01
β 8.0 8.0

Table 9: Classifier Training Hyperparameters

CIFAR-10 AFHQ-v2

Base channels 128 128
Num. classes 10 3
Channel multiplier [1,2,3,4] [1,2,3,4]
# Residual blocks 4 4
Non-Linearity Swish Swish
Attention resolution [16, 8] [16, 8]
# Attention heads 1 1
Dropout 0.1 0.1
FIR [16] False False
Progressive Input None None
Progressive Combine Sum Sum
Embedding type Positional Positional
Sigma scaling False False
Model size 56.7M 57.8M

Table 10: Classifier Network Hyperparameters

solver at different tolerance levels for ablations studies (Table 6 in the main text) and tolerance levels
of 1e−5 and 1e−4 for reporting SOTA results on CIFAR-10. Similarly, we use a tolerance level of
1e−5 for reporting ODE solver performance on CelebA-64. We use the odeint function from the
torchdiffeq[17] package when using the black-box ODE solver for sampling.

Timestep Selection during Sampling: We use Uniform (US) and Quadratic (QS) striding for
timestep discretization in this work. In uniform striding, given an NFE budget N, we discretize the
integration interval (ϵ, T) into N equidistant parts, which are then used for score function evaluations.
In quadratic striding [3, 18], the evaluation timepoints are given by:

τi =

(
i

N

)2

∀i ∈ [0, N) (139)

This ensures more number of score function evaluations in the lower timestep regime (i.e. t, which
is close to the data). This kind of timestep selection is particularly useful when the NFE budget is
limited (See Table 5).

Last-Step Denoising: Similar to prior works [2, 3, 19], we perform a single denoising EM step
(without noise injection) at the very last step of our sampling routine for both SDE and ODE solvers.
Formally, we perform the following update:(

x0

m0

)
=

(
xϵ

mϵ

)
+

βtϵ

2

(
Γxϵ −M−1mϵ + 2Γsθ(zϵ, ϵ)|0:d
xϵ + νmϵ + 2Mνsθ(zϵ, ϵ)|d:2d)

)
(140)

where ϵ = 1e−3. Such a denoising step has been found useful in removing additional noise, thereby
improving FID scores [19].
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Γ ν M−1 = (Γ−ν)2

4

FID@50k ↓
(EM-QS)

0 4 4 3.64
0.005 4.005 4 3.42
0.01 4.01 4 3.15
0.02 4.02 4 3.26
0.25 4.25 4 4.99

4 0 4 11.43
8 4 4 14.15

Table 11: Extended results for impact of the choice of Γ on sample quality for CIFAR-10. FID (lower
is better) reported on 50k samples.

Evaluation Metrics: For most ablation experiments involving the analysis of speed vs sample quality
trade-offs between different models, we report the FID [20] score on 10k samples for computational
convenience. For SOTA comparisons, we report FID for 50k samples for both CIFAR-10 and CelebA-
64 datasets. When reporting extended SOTA results for CIFAR-10, we also report the Inception
Score (IS) [21] metric. We use the torch-fidelity[22] package for computing all FID and IS
scores reported in this work. When reporting average NFE (number of function evaluations) in Table
6, we average the NFE values over a batch size of 16 samples for 10k samples in aggregate and take
a ceiling of the resulting value.

C.6 Classifier Architecture and Training

For class conditional synthesis (Appendix D.4), we append the downsampling part of the UNet
architecture with a classification head and use the resulting model as our classifier architecture. Table
10 shows different hyperparameters of our classifier model architecture. For classifier training, we
set Γ = 0.01 for the AFHQv2 and the CIFAR-10 datasets. The remaining SDE parameters remain
unchanged from our previous setting. Table 9 lists different hyperparameters for classifier training.

D Additional Results

D.1 Impact of Γ and ν on PSLD Sample Quality

Table 11 shows the impact of varying Γ and ν (with a fixed M−1) on the PSLD sample quality using
the EM-sampler with quadratic striding (EM-QS) for the CIFAR-10 dataset. Extending Table 4, we
additionally present FID scores for Γ ∈ {4.0, 8.0} in Table 11. As we increase the value of Γ to 4.0
or 8.0, the FID scores further increase to 11.43 and 14.15, respectively, confirming our observations
in Section 4.2. Figure 6 further illustrates the qualitative impact of increasing Γ on CIFAR-10 sample
quality. For the setting with Γ = 8.0, using EM with uniform striding (EM-US) introduces evident
noise artifacts in the generated samples. However, such artifacts are less pronounced when using
EM with quadratic striding ((EM-QS)) instead. This suggests potential denoising problems for low
timestep indices during sampling as quadratic striding focuses more score network evaluations in
the low timestep regime, which might lead to lesser artifacts. This is similar to our observations
in Section 4.2 (See Figure 7 for more qualitative results on CelebA-64). We now provide a formal
justification for these observations.

Given an input sample z̄t = (x̄t, m̄t) at time t, consider the following update rule for the EM-sampler
for PSLD with a uniform spacing interval of δt between successive steps:

(
x̄t′

m̄t′

)
=

(
x̄t

m̄t

)
+

βδt

2

(
Γx̄t −M−1m̄t + 2Γsθ(z̄t, T − t)|0:d
x̄t + νm̄t + 2Mνsθ(z̄t, T − t)|d:2d)

)
+

( √
Γβδtϵxt′√

Mνβδtϵmt′

)
(141)
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To simplify notation, let us denote β̄ = βδt
2 , sxθ (z̄t) = sθ(z̄t, T − t)|0:d and smθ (z̄t) = sθ(z̄t, T −

t)|d:2d. Therefore, for the next timestep t′, we have:

x̄t′ = x̄t + β̄
(
Γx̄t −M−1m̄t + 2Γsxθ (z̄t)

)
+
√

Γβδtϵxt′ (142)

m̄t′ = m̄t + β̄
(
x̄t + νm̄t + 2Mνsmθ (z̄t)

)
+

√
Mνβδtϵmt′ (143)

Similarly for the next consecutive time-step t
′′

, we have the following EM-update rule:

x̄t′′ = x̄t′ + β̄
(
Γx̄t′ −M−1m̄t′ + 2Γsxθ (z̄t′)

)
+

√
Γβδtϵxt′′ (144)

Substituting the update expressions for x̄t′ and m̄t′ from Eqns. 142-143 in the update rule for x̄t′′ ,
we have the following modified update rule for x̄t′′ :

x̄t′′ = f(x̄t, m̄t) + ŝθ + η (145)

where f is a function of (x̄t, m̄t), η is the aggregate stochastic noise. More importantly, the score
term ŝθ is given as follows:

ŝθ = 2β̄Γsxθ (z̄t) + 2β̄2
[
Γ2sxθ (z̄t)− νsmθ (z̄t)

]
+ 2Γβ̄sxθ (z̄t′) (146)

= 2β̄Γsxθ (z̄t) + 2β̄2
[(

sxθ (z̄t)
smθ (z̄t)

)T (
Γ2

−ν

)]
+ 2Γβ̄sxθ (z̄t′) (147)

= 2β̄Γsxθ (z̄t) + 2β̄2
[
sθ(z̄t)

T

(
Γ2

−ν

)]
+ 2Γβ̄sxθ (z̄t′) (148)

In this work, we parameterize the score sθ(z̄t) = −L−T
t ϵθ(z̄t) where Lt is Cholesky factorization

matrix of the covariance matrix Σt of the perturbation kernel at time t. Substituting this parameteri-
zation in Eqn. 148, we get,

ŝθ = 2β̄Γsxθ (z̄t) + 2β̄2
[
− ϵTθ (z̄t)L

−1
t

(
Γ2

−ν

)]
+ 2Γβ̄sxθ (z̄t′) (149)

= 2β̄Γsxθ (z̄t)− 2β̄2
[
Γ2(lxxt ϵxθ (z̄t) + lxmt ϵmθ (z̄t))− νlmm

t ϵmθ (z̄t)
]
+ 2Γβ̄sxθ (z̄t′) (150)

= 2β̄Γsxθ (z̄t)− 2β̄2
[
Γ2lxxt︸ ︷︷ ︸
=λ1

ϵxθ (z̄t) + (Γ2lxmt − νlmm
t )︸ ︷︷ ︸

=λ2

ϵmθ (z̄t)
]
+ 2Γβ̄sxθ (z̄t′) (151)

where,

lxxt =
1√
Σxx

t

(152)

lxmt =
−Σxm

t√
Σxx

t

√
Σxx

t Σmm
t − (Σxm

t )
2

(153)

lmm
t =

√
Σxx

t

Σxx
t Σmm

t − (Σxm
t )

2 (154)

Assuming the input z̄t is a sample from the underlying flow map of the reverse SDE (a very strong
assumption), the score term ŝθ in Eqn. 144 is the primary source of introducing errors (since
the neural network-based score prediction will be offset by some error from the true underlying
score). Without loss of generality, we further assume that the update timepoints t, t′and t′′ lie in
the low timestep regime. Furthermore, for notational convenience, we denote λ1 = Γ2lxxt and
λ2 = (Γ2lxmt − νlmm

t ) as the scaling factors for the second term in Eqn. 151. Thus, the error
introduced due to the neural network predictors ϵxθ (z̄t) and ϵmθ (z̄t) will be scaled by λ1 and λ2

respectively. Therefore, for achieving lower sampler discretization errors, it might be desirable to
have low magnitudes of λ1 and λ2. We now qualitatively analyze the magnitude of these coefficients
for different ranges of values of Γ and ν.

Case-1: Effect of using a non-zero Γ: We first analyze the impact of using a non-zero Γ value on the
magnitude of λ1 and λ2. Figure 4a illustrates the impact of the choice of Γ and ν on the coefficients
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Figure 4: (a) Comparison between |λ1| and |λ2| corresponding to Γ = 0.0 and Γ = 0.01 in the
low-timestep regime for a fixed M−1 = 4. (b) Variation of |λ2| for different values of (Γ, ν)

λ1 and λ2 in the low-timestep regime. When Γ = 0, the error in the score term ŝθ will be only due to
the term |λ2|ϵmθ (z̄t). As illustrated in Figure 4a, the value of |λ2| (when Γ = 0) is very high in the
low-timestep regime and, therefore might negatively impact the sample quality since any errors in the
estimation of ϵmθ (z̄t) would be scaled by a large factor.

Interestingly, for the setting Γ = 0.01, ν = 4.01, the value of |λ2| reduces significantly, thus reducing
the error scaling factor. It is worth noting that using a non-zero Γ also simultaneously enables error
contribution from other terms in ŝθ involving Γ (especially |λ1|ϵxθ (z̄t)). However, as illustrated
in Figure 4a, the value of |λ1| is extremely small as compared to |λ2| making the additional error
introduced insignificant. Due to this reason, the overall error introduced by the score term ŝθ is more
when Γ = 0 as compared to the setting with a (small) non-zero Γ value. This explains why using a
small value of Γ yields better sample quality than our CLD baseline (See Table 4)

Case-2: Effect of using a large Γ: Figure 4b illustrates the variation of |λ2| for some more values
of Γ. Interestingly for Γ = 4.0, the value of |λ2| decreases to almost 0 in the low-timestep regime.
However, for Γ = 4.0, the value of |λ1| increases significantly (Figure 5a), therefore, leading to large
error scaling factors in the term |λ1|ϵxθ (z̄t). This finding justifies our observation in Figure 2, where a
value of Γ = 0.25 makes sample quality significantly worse for the CelebA-64 dataset and is unable
to recover high-frequency details. Figure 5b further illustrates the variation of |λ1| for different (Γ, ν)
pairs in the low-timestep regime.

From the above analysis, it seems that the choice of Γ provides an important trade-off between
balancing the errors produced due to the terms ϵxθ (z̄t) and ϵmθ (z̄t) in Eqn. 151. Therefore, the choice
of Γ is crucial for sample quality in PSLD.

D.2 Additional Speed vs. Sample Quality Comparisons

CIFAR-10: We extend the Speed vs. Sample Quality results in Table 5 to include results for PSLD
with Γ = 0.01 in Table 12

CelebA-64: Similar to our setup for CIFAR-10 (Section 4.3), we benchmark the speed vs quality
tradeoffs of PSLD (Γ = 0.005) against our CLD ablation baseline for the CelebA-64 dataset (See
Table 13). Similar to CIFAR-10, PSLD outperforms our CLD baseline across all timesteps. The
performance difference is most notable in the low-timestep regime (FID of 6.99 for PSLD with EM-
QS vs 10.7 for CLD with SSCS-QS). However, there are two notable differences in our observations
when compared to CIFAR-10:

(i) Firstly, quadratic striding works best for the CelebA-64 dataset. This contrasts with CIFAR-10,
where a uniform striding schedule works better.
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Figure 5: (a) Comparison between |λ1| and |λ2| corresponding to Γ = 4.0 and ν = 0.0 in the
low-timestep regime. (b) Variation of |λ1| for different values of (Γ, ν)

NFE (FID@10k ↓)
Sampler Method 50 100 250 500 1000

EM-QS

CLD 25.01 8.91 5.97 5.61 5.7
VP-SDE 17.72 7.45 5.59 5.51 5.51

(Ours) PSLD (Γ = 0.01) 23.96 8.12 5.41 5.13 5.24
(Ours) PSLD (Γ = 0.02) 19.94 7.33 5.26 5.20 5.28

EM-US

CLD 119.68 45.60 9.08 5.71 5.65
VP-SDE 84.54 41.93 12.61 5.92 5.19

(Ours) PSLD (Γ = 0.01) 109.01 40.22 9.07 5.25 4.95
(Ours) PSLD (Γ = 0.02) 100.62 39.96 11.26 5.45 4.82

SSCS-QS
CLD 21.31 8.37 5.82 5.75 5.69

(Ours) PSLD (Γ = 0.01) 18.41 7.42 5.41 5.28 5.29
(Ours) PSLD (Γ = 0.02) 16.12 7.16 5.36 5.35 5.27

SSCS-US
CLD 75.45 24.74 6.09 5.74 5.78

(Ours) PSLD (Γ = 0.01) 76.6 21.25 5.18 5.10 5.33
(Ours) PSLD (Γ = 0.02) 72.42 20.46 5.19 4.92 5.29

Table 12: Extended Speed vs. Sample quality comparisons using the SDE setup for CIFAR-10. FID
computed for 10k samples. Values in bold indicate the best result for that column.

(ii) More interestingly, PSLD achieves the best performance of FID=3.77 at N=250 steps, and sample
quality degrades on further increasing the number of steps. This contrasts our results for CIFAR-10,
where PSLD achieves the best performance at T=1000.

D.3 Extended SOTA Results

Extended Qualitative Results: We provide qualitative samples from our SOTA CIFAR-10 models
using the SDE and ODE setups in Figures 8 and 9 respectively. We provide some additional samples
from the AFHQv2 dataset at the 128 x 128 resolution in Figure 10.

Extended Quantitative Results: Table 14 shows the FID and IS scores for all models using the
SDE sampling setup. PSLD with Γ = 0.02 attains the best IS score of 9.74. When using the ODE
sampling setup (Table 15), PSLD with Γ = 0.02 achieves the best IS score of 9.93.

D.4 Conditional Synthesis using PSLD

Class-Conditional Synthesis: As discussed in Section 4.4, given class label information y, an
unconditional pre-trained score network sθ(zt, t) can be used for sampling from the class conditional
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NFE (FID@10k ↓)
Sampler Method 50 100 250 500 1000

CLD 73.61 14.78 4.77 4.48 4.59EM-QS (Ours) PSLD (Γ = 0.005) 44.36 6.99 3.77 3.92 4.17

CLD 122.63 54.67 11.66 4.97 4.6EM-US (Ours) PSLD (Γ = 0.005) 99.05 44.06 8.9 4.42 4.37

CLD 44.83 10.7 4.82 4.73 4.74SSCS-QS (Ours) PSLD (Γ = 0.005) 34.3 8.13 4.16 4.11 4.09

CLD 105.16 45.54 6.75 4.06 4.18SSCS-US (Ours) PSLD (Γ = 0.005) 97.8 35.59 4.65 4.08 4.05

Table 13: Speed vs. Sample Quality comparison using the SDE setup for CelebA-64. FID computed
for 10k samples. Values in bold indicate the best result for that column.

Model Size NFE FID ↓ IS ↑

PSLD (Γ=0.01) 55M 1000 2.34 9.57
PSLD (Γ=0.02) 55M 1000 2.3 9.68

PSLD (Γ=0.01, deep) 97M 1000 2.26 9.71
PSLD (Γ=0.02, deep) 97M 1000 2.21 9.74

Table 14: CIFAR-10 sample quality (SDE). FID
(lower is better) and IS (higher is better) were
computed on 50k samples.

Model Size NFE FID ↓ IS ↑

PSLD (Γ=0.01) 55M 243 2.41 9.63
PSLD (Γ=0.02) 55M 232 2.4 9.84

PSLD (Γ=0.01, deep) 97M 246 2.10 9.79
PSLD (Γ=0.02, deep) 97M 231 2.31 9.91
PSLD (Γ=0.01, deep) 97M 159 2.13 9.76
PSLD (Γ=0.02, deep) 97M 159 2.34 9.93

Table 15: CIFAR-10 sample quality (ODE). FID
(lower is better) and IS (higher is better) were
computed on 50k samples.

distribution p(zt|y) in PSLD. More specifically, we need to simulate the following reverse SDE:

dzt =
[
f(zt)−G(t)G(t)T∇zt log p(zt|y)

]
dt+G(t)dwt (155)

The conditional score ∇zt log p(zt|y) can be further decomposed as follows:

∇zt
log p(zt|y) = ∇zt

log p(y|zt) +∇zt
log p(zt) (156)

≈ ∇zt
log p(y|zt)︸ ︷︷ ︸

Classifier Gradient

+ sθ(zt, t)︸ ︷︷ ︸
Score

(157)

For practical scenarios, it is common to scale the contribution of the classifier gradient by a factor of
λ > 1. Thus,

∇zt log p(zt|y) = λ∇zt log p(y|zt) + sθ(zt, t) (158)

The above technique of approximating the conditional score ∇zt log p(zt|y) is called as classifier-
guidance [2, 23]. The classifier p(y|zt) is trained by minimizing a time-dependent cross-entropy loss
as follows:

Lclf(ϕ) = Et∼U(0,1)Ex0,y∼pdata(x0,y)
Ezt∼p(zt|x0)

[
−
∑
k

1(y = yk) logC
k
ϕ(zt, t)

]
(159)

where Ck
ϕ(zt, t) is a time-dependent classifier that takes as input a perturbed data point zt and outputs

class prediction probabilities. We perform class conditional synthesis for the CIFAR-10 (10 classes)
and the AFHQ-v2 datasets. For the AFHQ-v2 dataset, we use the classes Cats, Dogs, and Others
from the train split for classifier training (See Appendix C.6 for complete implementation details).
We provide additional class conditional samples for CIFAR-10 in Figure 11 and for AFHQ-v2 in
Figure 12.

Image Inpainting: Following [2], we can partition the input x0 into known (x̂0) and unknown
(x̄0) components respectively. We can now define the diffusion for the unknown component in the
augmented space as follows:

dz̄t = f̄(zt)dt+ Ḡ(t)dwt (160)
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where f̄(zt) = f(z̄t) i.e. the drift applied to the missing components of zt. Similarly, Ḡ(t)
corresponds to the diffusion coefficient applied to the corresponding components of Brownian motion
dwt. The corresponding reverse-SDE (conditioned on the observed signal x̂0) can be specified as:

dz̄t =
[
f̄(zt)− Ḡ(t)ḠT (t)∇z̄t log p(z̄t|x̂0)

]
dt+ Ḡ(t)dwt (161)

Following the derivation in [2], it can be shown that:

∇z̄t log p(z̄t|x̂0) ≈ ∇z̄t log p(z̄t|ẑt) (162)
= ∇z̄t log p([z̄t; ẑt]) (163)

where ẑt ∼ p(ẑt|x̂0) is a noisy augmented state sampled from the perturbation kernel given an
observed signal x̂0. We provide additional imputation results in Figure 13

General Inverse Problems: Similar to imputation, we can utilize PSLD for solving general inverse
problems. Given a conditioning signal y, we have,

∇zt
log pt(zt | y) = ∇zt

log

∫
pt(zt | yt,y)p(yt | y)dyt, (164)

Further assuming that p(yt | y) is tractable and pt(zt | yt,y) ≈ pt(zt | yt), we have

∇zt log pt(zt | y) ≈ ∇zt log

∫
pt(zt | yt)p(yt | y)dyt (165)

≈ ∇zt
log pt(zt | ŷt) (166)

= ∇zt
log pt(zt) +∇zt

log pt(ŷt | zt) (167)
≈ sθ∗(zt, t) +∇zt

log pt(ŷt | zt), (168)

where ŷt ∼ p(yt | y). Thus PSLD can be used for conditional synthesis like previous SGMs [2]
while achieving better speed-vs-quality tradeoffs and better overall sample quality. Therefore, PSLD
provides an attractive baseline for further developments in SGMs.
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Figure 6: Qualitative illustration of the impact of Γ on CIFAR-10 sample quality. Samples get
progressively worse when increasing Γ. (Uncurated) Samples in the left and right columns were
generated using EM-US and EM-QS samplers.
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Figure 7: Qualitative illustration of the impact of Γ on CelebA-64 sample quality. Samples get
progressively worse when increasing Γ. (Uncurated) Samples in the left and right columns were
generated using EM-US and EM-QS samplers.
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Figure 8: Uncurated samples from our SOTA PSLD (Γ = 0.02, ν = 4.02) model using SDE sampling
(FID=2.21, NFE=1000)
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Figure 9: Uncurated samples from our SOTA PSLD (Γ = 0.01, ν = 4.01) model using ODE
sampling (FID=2.10, NFE=246)
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Figure 10: Random unconditional AFHQv2 samples at 128x128 resolution from our PSLD (Γ = 0.01)
model using the EM-QS sampler with N=1000.
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Airplane Automobile Cat

Cat Deer Dog

Horse Ship Frog

Truck

Figure 11: Randomly sampled class conditional results on the CIFAR-10 dataset using the EM-US
sampler (N=1000). Guidance weight λ = 5.0. Using large guidance weight reduces diversity but
improves sample quality.
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Figure 12: Randomly sampled class conditional results on the AFHQv2 dataset using the EM-US
sampler (N=1000). Guidance weight λ = 10.0. (Top to Bottom) Each of the three rows correspond
to Dog, Cats and Others.
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Figure 13: Additional imputation results on the AFHQv2 dataset (test split) using the EM-US sampler
(N=1000). The Rightmost column indicates some failure cases.
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