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Abstract

In this supplemental document, we provide additional
details and experiment results for our proposed method. In
particular, we provide an in-depth description of the seg-
mentation procedure used in our stylization procedure; a
user study; and more qualitative results on the LLFF and
the Replica dataset.

1. Segmentation procedure
In this section, we describe in greater detail the segmen-

tation procedures used for creating scene regions and style
regions. As mentioned in the main paper, our stylization
method can be performed irrespective of the segmentation
method used.

1.1. Scene regions

Given a set of training images {ŷ}, we want to generate a
set of segmentation maps {k̂}, where every pixel is classified
into a finite set of C scene regions. The segmentation process
should be unsupervised (i.e. C is not set to a fixed value, and
is determined during segmentation), and can be applied to
any arbitrary set of scenes.

To satisfy these requirements, we base our implementa-
tion on the segmentation procedure proposed by Kim et. al.
[2]. In their method, a single image is passed into a CNN
model producing a response map r ∈ RH×W×Q, where Q
is the upper bound of no. of scene regions. A segmenta-
tion map c ∈ RH×W can be obtained from r by taking the
argmax function.

This network is trained with a combination of the similar-
ity loss Lsim and continuity loss Lcon. The similarity loss
is defined as the sum of cross-entropies between response
vector rn and the target vector cn:

Lsim(r) = −
∑
n

Q∑
i=1

cn,i log rn,i, (1)

where cn is the one-hot vector in c corresponding to rn. The
continuity loss is defined as the sum of L1 distances between
horizontally and vertically adjacent features in r:

Lcon(r) =

W−1∑
i=1

H−1∑
j=1

∥ri+1,j − ri,j∥1 + ∥ri,j+1 − ri,j∥1.

(2)

It can be seen that Lsim encourages similar features in r to
be grouped together and form a single cluster; Lcon ensures
spatial continuity of clusters and prevents the segmentation
from being too fragmented. In general, the unique number
of classes in c is initially high (i.e. close to Q), and gradually
decreases over time as more and more feature vectors in r
are clustered into the same region.

To extend this method to segmentation of multiple images
simultaneously, we train the segmentation network by sam-
pling a batch of B images during each iteration, instead of a
single image. The loss values for each individual response
maps {r1, · · · , rB} are computed and summed together. Af-
ter the network is trained, we can run segmentation over all
of {ŷ}, obtain the set of C remaining active classes, and
re-index the segmentation maps from 1 to C.

1.2. Style regions

Given a style image s, we want to segment it into a set
of S style regions {sj}, once again without explicit supervi-
sion. Unlike section 1.1, we only need to apply segmenta-
tion on a single image. We use the robust Segment-Anything
method [3] as it has good performance outside real-life im-
ages, which is the case for style images in artistic style
transfer. We use the official pretrained weights based on
ViT-H [1].

Directly applying the method results in a set of regions
{sj} which may overlap with each other. To fix this issue,
we first sort the regions in decreasing order of size, and run
the procedure in Algorithm 1. Here, {s1, · · · , sN} is the
list of regions from largest to smallest; m ∈ RH×W is a
binary map that keep tracks if a pixel has been assigned to a



Algorithm 1 Filtering overlapping style regions
m← 0
k← −1
i← 0
for sj in {s1, · · · , sN} do

if
∑

m[sj ]/|sj | ≥ λt and |sj |/∥s∥ ≥ λm then
(m[sj ])← 1
(k[sj ])← i
i← i+ 1

end if
end for

style region; and k ∈ RH×W is the segmentation map. The
notation m[sj ] and k[sj ] represents the subset of pixels in
m and k belonging to region sj . λt determines if the current
sj is overlapping with previous regions; λm ensures that
regions too small are not considered. We set λt as 0.05 and
λm as 0.004 (i.e. 0.4% of total image area).

After the procedure, each pixel of k should be given an
integer value from [−1, S − 1], where 0 to S − 1 indicates
the S style regions. An index of -1 means that the pixel
is not assigned to any region, and is not considered during
stylization.

Last but not least, k is downscaled by nearest neighbor in-
terpolation to match the dimensions of fs, the VGG features
extracted from s.

1.3. Fine vs. coarse regions

The values of C and S determines the level of fineness
during the segmentation of scene and style regions. We
provide an ablation experiment to experiment on the effect
of using larger values of C and S on the stylization result.

The value of C can be indirectly controlled by modifying
the number of iterations of training the unsupervised seg-
mentation network; in general, by using a smaller number of
iterations, the network output will contain a larger number of
classes as it has not fully converged. For this experiment, we
segment the style image s with the same procedure as scene
regions, creating different segmentation maps with different
values of S.

Figure 2 demonstrates segmentation results under three
sets of scene regions and style regions. In the first example,
the change from C = 8, S = 14 to C = 19, S = 25 results
in a more varied stylization result; the walls and ceiling
are dissected into smaller scene regions which are given
different styles. However, ”over-segmentation” of the style
image s will only result in smaller style regions with similar
patterns and colors, i.e. it will not create significant changes
towards the stylization result, as demonstrated by the results
of increasing C, S to C = 41, S = 47. A similar trend can
be observed for the second example as well.

1.4. Injective and surjective mapping

When computing the mappingM, our current method
assumes that C ≤ S, i.e. M is injective. Under this as-
sumption, every scene region is matched to a unique style
region, which prevents a single local style from dominating
the stylization.

However, the computation of our style loss LS can take
in any arbitrary mapping function. For example, in the case
where C < S, we can produce a surjective mapping where
every style region has to be used for stylization.

To demonstrate this point, we provide an additional abla-
tion experiment comparing between injective mapping and
surjective mapping in Fig. 1. Under our default injective
setting, we have C = 4, S = 15. By reducing the number of
training iterations during the segmentation of scene regions,
we can increase the number of C from 4 to 26. To generate a
surjective mapping with 26 scene regions, we run our current
Hungarian algorithm matching to obtain a bijective mapping
for 15 scene regions; then run the algorithm again to match
the remaining 9 scene regions.

Injective

Surjective

Figure 1. Injective vs. surjective mapping comparison.

In this example, we observe that the increase in scene
regions means a more diverse stylization result; for example,
the chairs are no longer constrained to be stylized in the
same style as the ceiling. Nevertheless, many scene regions
similar in nature are stylized similarly. This arises from the
fact that multiple scene regions are now assigned to the same
style region, or style regions that have similar patterns and
appearances.

One future direction to extended our current method is
to improve the automatic matching algorithm such that any
general mappingM can be considered as a candidate.



Figure 2. Stylization results by using segmentation maps of different degree of fineness.
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Figure 3. User study results.

2. User study

We conduct a user study to verify the performance of
our proposed method compared with ARF [6]. The study
consists of 20 questions presented in random order; each
question consists of two images rendered from a scene styl-
ized by our method; as well as the two ARF-generated im-
ages with the same scene and camera pose. The order of the
two choices are randomized. In addition, the correspond-
ing ground truth training image and the style images are
also shown. The user is asked to select the choice that
preserves the content of the ground truth image, and simul-
taneously appears similar to that of the style image. Out
of the 20 questions, 12 of them correspond to images ren-
dered from the trex, room and fern scenes from the
LLFF [4] dataset; and 8 of them correspond to images ren-
dered from the office3 and frl apartment3 scenes
in the Replica dataset [5].

We collected a total of 23 replies and the percentage
of picking each method is summarized in Figure 3. The
study shows that on average our method is picked at a higher
percentage than ARF on both the LLFF and Replica datasets.

3. Further qualitative results
We show in this section the results of simultaneously

training the stylization of multiple styles within a single hash
grid. Figure 4 shows the fern scene from LLFF stylized
in four distinct styles. Figure 5 compares the difference
between with and without regional matching.

We provide further qualitative results for the LLFF dataset
in Figure 6, and for the Replica dataset in Figure 7. Both
figures illustrate that our method is less likely to transfer sim-
ilar, repetitive patterns to the NeRF scene. This is especially
the case in low-frequency regions, e.g. concrete walls and
bare surfaces.

Our algorithm for matching content-style regions work by
assuming that the regions can be paired up in a meaningful
sense. However, even in cases where there is little to no
correlation between regions from the NeRF scene and style
image, our method is able to transfer local patterns on the
scene.

Finally, we provide two further examples of modifying
the pairing between content and style regions in Figure 8.
We demonstrate that our method can achieve diverse and
customizable stylization results via adjusting the pairing.



Figure 4. Multiple styles rendered from the same model.

Figure 5. Comparison with and without regional matching. Left column uses regional matching; middle column do not use regional matching,
i.e. reduces to the NNFM loss which looks for closest feature vector across entire image; Right column shows result from ARF.



Figure 6. Further qualitative comparison on LLFF dataset.



Figure 7. Further qualitative comparison on Replica dataset.



Figure 8. Effect of modifying the pairing between content and style regions. In each example, two content regions have been mapped to two
different style regions in the style image (middle column), leading to two completely different stylization results (left and right columns).
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