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I. Datasets

The exact numbers of training samples and classes
for each dataset used in the experiments of Section 4
in the main paper are given in Table 1. For datasets
with more than 120k training instances in VTAB+,
due to hardware limitations, we randomly sample 120k
images and the associated labels and we consider this
subset as the full training set. For instance, when we
use dSprites-location dataset in a 50-shot setting, we
first randomly sample 120k examples and then we ran-
domly pick 50 images for each one of the 16 classes.
For DomainNet and iNaturalist we apply a different
procedure (see Section II for details).

For evaluation, we consider the protocol used in [30]
on the 19 datasets in VTAB, where a balanced dataset
of 2k images is created by randomly sampling images
from the full test dataset. For FGVC-Aircraft, Cars,
and Letters the full test dataset is utilized. We also
use the full test dataset for evaluation in the high-shot
Class-Incremental Learning (CIL) setting.

II. Dataset Information for the Class-
Incremental Learning Experiments

In Table 2, we present detailed information about
the Class-Incremental Learning Experiments (CIL) ex-
periments that are in Section 4.3 in the main paper,
such as the number of total sessions, number of train
instances, and classes per session. Next, we discuss the
exact setup for DomainNet and iNaturalist.

DomainNet & iNaturalist. DomainNet and iNat-
uralist are the only datasets for which we follow a dif-
ferent pre-processing procedure from the one described

in Section I in order to create a few-shot CIL scenario
similar to the ones considered in the literature. This
is due to the large number of classes (iNaturalist has
10, 000 classes) and different domains (DomainNet in-
cludes images from 6 domains) these datasets have.

DomainNet is a large-scale dataset of ∼ 0.6M images
lying in 6 different domains (clipart, infograph, paint-
ing, quickdraw, real, sketch) and categorized into 365
distinct classes. These classes can be grouped into 24
superclasses: furniture, mammal, tool, cloth, electric-
ity, building, office, human body, road transportation,
food, nature, cold-blooded, music, fruit, sport, tree,
bird, vegetable, shape, kitchen, Water transportation,
sky transportation, insects, and others. In our CIL ex-
periments, we use 60 classes from the superclasses with
an adequate number of instances (> 150): furniture,
mammal, tool, cloth, electricity, and road transporta-
tion. To the best of our knowledge, this is the first time
such a dataset is considered for CIL problems. Table 3
summarizes the DomainNet classes we use for the CIL
experiments. To build the 50-shot CIL setting of Sec-
tion 4.3, we randomly sample 50 images per class and
the rest of the images are used for evaluation.

The iNaturalist is another large-scale dataset. com-
prising ∼ 2.7 million images of 10, 000 species. The
species can be divided into 10 general categories: am-
phibians, animalia, arachnids, birds, fungi, insects,
mammals, mollusks, plants, and reptiles. Due to the
dataset’s large size, we have opted to use the “mini”
version of the training dataset1 which has 50 images per
class, and thus, this is the only dataset from the few-
shot CIL experiments that we do not repeat for 5 times

1We use the data from the 2021 competition, available at
https://github.com/visipedia/inat_comp/tree/master/2021.



Datasets # Classes # Train instances ALL CIL

Caltech101 [6] 102 3, 060 ✓ ✗
CIFAR100 [14] 100 50, 000 ✓ ✓
Flowers102 [20] 102 1, 020 ✓ ✗
Pets [21] 37 3, 680 ✓ ✗
Sun397 [28] 397 76, 127 ✓ ✗
SVHN [19] 10 73, 257 ✓ ✓
DTD [4] 47 1, 880 ✓ ✗

EuroSAT [8] 10 27, 000 ✓ ✗
Resics45 [3] 45 31, 500 ✓ ✗
Patch Camelyon [26] 2 262, 144 ✓ ✗
Retinopathy [11] 5 35, 126 ✓ ✗

CLEVR-count [10] 8 70, 000 ✓ ✗
CLEVR-dist [10] 6 70, 000 ✓ ✗
dSprites-loc [18] 16 737, 280 ✓ ✓
dSprites-ori [18] 16 737, 280 ✓ ✗
SmallNORB-azi [15] 18 24, 300 ✓ ✗
SmallNORB-elev [15] 9 24, 300 ✓ ✗
DMLab [1] 6 65, 550 ✓ ✗
KITTI-dist [7] 4 6, 347 ✓ ✗

FGVC-Aircraft [17] 100 6, 667 ✓ ✓
Cars [13] 196 8, 144 ✓ ✓
Letters [5] 62 74, 107 ✓ ✓

DomainNet [23] 60 (345†) 569, 010 ✗ ✓

iNaturalist [25] 100 (10, 000†) 500, 000 ✗ ✓
Core50 [16] 50 119, 894 ✓ ✓
CUB200 [27] 200 11, 788 ✗ ✓

Table 1. Information concerning all datasets used in the experiments. † denotes the number of classes of the original dataset
before they are modified for the continual learning scenarios (see Section II for more details). The first 22 datasets form
the VTAB+ collection. We also indicate whether a dataset has been used in the offline experiments in Section 4.2 of the
main paper which use all the available training data (ALL). Similarly, we indicate which datasets are considered for the
Class-Incremental Learning settings in Section 4.

since the (mini) train dataset is already in a 50-shot set-
ting. For evaluation, we use the validation data with 10
images per class. The number of classes considered for
the CIL experiments is reduced from 10, 000 to 100; 10
classes per superclass (10 superclasses/sessions). Spe-
cific details are given in Tables 4 and 5.

III. Extra Training Details

Due to the large number of experiments and datasets
we tried to keep the hyperparameter tuning to a mini-
mum by choosing a set of hyperparameters that works
fairly well across all datasets and settings. We have not
used any data augmentation in our experiments and
all images have been scaled to 224 × 224 pixels. The
only exception is the experiments on CIFAR100, and
CUB200 under the few-shot+ setting. There, for com-

parability reasons, we followed the exact experimental
settings as in [31] where standard data augmentation
techniques (e.g. random flips and crops) were utilized.
Moreover, when we used ResNet-20 for CIFAR100 we
maintained the original image size (32× 32).

Computing Infrastructure Details & Code. All
the experiments of Section 4 have been carried out on
a Linux machine with a single NVIDIA-A100 (80GB
memory) GPU. Our PyTorch-based code will be made
available via a public repository after the review pe-
riod.

Optimization Details. In all experiments, we train
the models using a batch size of 256. Apart from
GDumb, for the rest of the methods, EfficientNet-B0



CIL setting Datasets S N1 |Y1| Ns |Ys|

High-shot

CIFAR100 10 5k 10 5k 10
SVHN 5 ∼ 19k 2 ∼ 14k 2

dSprites-loc 7 24k 4 12k 2
FGVC-Aircraft 10 667 10 ∼ 670 10

Cars 10 652 15 ∼ 830 20
Letters 11 ∼ 11k 12 ∼ 5k 5
Core50 9 ∼ 24k 10 ∼ 12k 5

Few-shot+
CIFAR100 9 30k 60 25 5
CUB200 11 3k 100 50 10

Few-shot

CIFAR100 9 1k 20 500 10
SVHN 5 100 2 100 2

dSprites-loc 7 200 4 100 2
FGVC-Aircraft 9 1k 20 500 10

Cars 9 1484 36 ∼ 830 20
Letters 11 600 12 250 5

DomainNet 9 600 12 300 6
iNaturalist 9 1k 20 500 10

Table 2. Detailed CIL settings for the experiments of Sec-
tion 4.3. We report the total number of sessions (S),
the number of train instances (N1), and the number of
classes (|Y1|) of the first session and the rest of the sessions
(Ns, |Ys|, s > 1).

backbones are optimized with the Adam optimizer [12]
while for ResNet architectures we opt for SGD with
momentum set to 0.9. For GDumb, we follow [24]
and we use SGD with momentum. For FACT [31]
and FSA with pre-trained EfficientNet-B0 backbone,
we set the initial learning rate to 0.0001 with sched-
uled decays by a factor of 0.5 every 50 epochs while for
FSA-FiLM, we set it to 0.005. We train all full-body
adaptation methods for 200 epochs and the FSA-FiLM
for 150 epochs (except for the high-shot setting where
we use 200 epochs for fair time comparisons). For the
few-shot+ CIL scenario, we follow the training setup
of [31]. The weights of the pre-trained EfficientNet-
B0 have been obtained from https://github.com/

lukemelas/EfficientNet-PyTorch while for the pre-
trained weights of ResNet-18 and ConvNext, we
use the following repository https://github.com/

rwightman/pytorch-image-models.

Competitors. We found empirically that the rec-
ommended hyperparameter values (learning rates, cut-
mix parameters, SGDR schedule) for GDumb in [24]
work well in practice and we use these through-
out the experiments. Similarly, for FACT, we
use the default values α = 0.5, γ = 0.01, V =
number of new classes in total [31]. For ALICE, fol-
lowing [22], the projection head is a two-layer MLP
with a hidden feature size of 2048 and ReLU as the ac-

tivation function. All the other hyperparameters (scale
factor s, margin m, etc.) are set as in [22]. For E-
EWC+SDC, a triplet loss [9] is used as in [29] and the
final embeddings of 640 dimensions are normalized.

IV. Additional Results

In this section, we provide tables with the exact ac-
curacies for each one of the datasets used in the ex-
periments under different settings. We have run ex-
tra experiments on VTAB+ using meta-learned FiLM
adapters in the offline setting and we report accuracies.
Additionally, we perform a comparison between differ-
ent backbones in the offline setting: EfficientNet-B0
and ResNet-18. For the high-shot setting, apart from
the four datasets utilized in the main paper, we also
deploy the methods on SVHN and present accuracies
by session. Finally, accuracies at each session for all
three CIL settings are provided.

Head Comparison. Here we provide the exact accu-
racies for each dataset based on Section 4.2 and Figure
1. Tables 6, 7, 8, and 9 give the offline accuracies for the
no adaptation (NA) method for 5, 10, 50 shots, and all
training data, respectively. Similar information for the
FiLM adaptation method (A-FiLM) is given in Tables
10, 11, 12, and 13. Finally, Tables 14, 15, 16, and 17
provide the corresponding accuracies for the full-body
adaptation method (A-FB).

Meta-learned FiLM Adapters. We consider ex-
periments in the offline setting with meta-learned FiLM
adapters. We use the meta-trained FiLM adapters as
presented in [2]. The results for meta-learned FiLM
adapters, as well as for no-adaptation (NA), FiLM
(fine-tuned) adaptation (FiLM), and full body adapta-
tion methods, are summarized in Tables 21, 22, and 23,
for 5, 10, and 50 shots, respectively. We observe that
the meta-trained FiLM adapters work better than NA
in all cases, but they fail to compete with the fine-tuned
FiLM adapters. Notice that as the number of shots in-
creases, the accuracy difference between meta-learned
and fine-tuned FiLM adapters also increases.

FiLM Adaptation: EfficientNet-B0 vs ResNet-
18. To assess how different backbone architectures
affect the performance of the no-adaptation and
FiLM adaptation method, we compare ResNet-18 and
EfficientNet-B0 (EN) backbones in Tables 18, 19, and
20, for 5, 10, and 50 shots, respectively. All tables
demonstrate the superiority of EfficientNet-B0, regard-
less of the adaptation method. The tables also show
that, regardless of backbone architecture and number



Domain Clipart Infograph Painting Quickdraw Real Sketch

Superclass Furniture Mammal Tool Cloth Electricity Road Transportation

Classes

Clipart Infograph Painting Quickdraw Real Sketch
Furniture Mammal Tool Cloth Electricity Road Transportation
Couch (1) Cat (11) Anvil (21) Belt (31) Calculator (41) Ambulance (51)
Fence (2) Dolphin (12) Basket (22) Camouflage (32) Computer (42) Bus (52)

Streetlight (3) Squirrel (13) Rifle (23) Eyeglasses (33) Fan (43) Motorbike (53)
Table (4) Zebra (14) Axe (24) Helmet (34) Oven (44) Train (54)

Toothbrush (5) Cow (15) Dumbbell (25) Necklace (35) Dishwasher (45) Bicycle (55)
Vase (6) Elephant (16) Pliers (26) Rollerskates (36) Headphones (46) Car (56)
Bed (7) Pig (17) Saw (27) Sock (37) Microwave (47) Truck (57)

Fireplace (8) Tiger (18) Skateboard (28) Underwear (38) Radio (48) Bulldozer (58)
Teapot (9) Dog (19) Bandage (29) Bowtie (39) Stereo (49) Firetruck (59)
Lantern (10) Rabbit (20) Paint Can (30) Crown (40) Toaster (50) Tractor (60)

Table 3. DomainNet classes (class id in parentheses) used for the few-shot CIL setting.

Superclass

Amphibians Animalia Arachnids Birds Fungi
Session 1 2 3 4 5

Classes

Ascaphus truei Lumbricus terrestris Eratigena duellica Accipiter badius Herpothallon rubrocinctum
Bombina orientalis Sabella spallanzanii Atypoides riversi Accipiter cooperii Chrysothrix candelaris
Bombina variegata Serpula columbiana Aculepeira ceropegia Accipiter gentilis Apiosporina morbosa

Anaxyrus americanus Spirobranchus cariniferus Agalenatea redii Accipiter nisus Acarospora socialis
Anaxyrus boreas Hemiscolopendra marginata Araneus bicentenarius Accipiter striatus Physcia adscendens

Anaxyrus cognatus Scolopendra cingulata Araneus diadematus Accipiter trivirgatus Physcia aipolia
Anaxyrus fowleri Scolopendra heros Araneus marmoreus Aegypius monachus Physcia millegrana

Anaxyrus punctatus Scolopendra polymorpha Araneus quadratus Aquila audax Physcia stellaris
Anaxyrus quercicus Scutigera coleoptrata Araneus trifolium Aquila chrysaetos Candelaria concolor
Anaxyrus speciosus Ommatoiulus moreleti Araniella displicata Aquila heliaca Cladonia chlorophaea

Table 4. Classes used from iNaturalist to create the few-shot CIL setting. (table continues to Table 5).

of shots, FiLM adaptation provides significant perfor-
mance benefits.

High-shot CIL: Accuracies per Session. We pro-
vide detailed accuracies for each incremental session for
all baselines in the high-shot CIL setting. The accu-
racies for CIFAR100, CORE50, SVHN, dSPrites-loc,
FGVC-Aircraft, Cars, and Letters can be found in Ta-
bles 24, 25, 26, 27, 28, 29, and 30, respectively. For
GDumb, we provide results with a memory buffer of
size 1k and 5k.

Few-shot+ CIL: Accuracies per Session. We
provide detailed accuracy for each incremental session
for all baselines in the few-shot+ CIL setting. The ac-
curacies for CIFAR100 and CUB200 can be found in
Tables 31 and 32, respectively.

Few-shot CIL: Accuracies per Session. We pro-
vide detailed accuracy (+ error bars) for each incre-
mental session for all baselines in the few-shot CIL set-
ting. The accuracies for CIFAR100, SVHN, dSprites-
location, FGVC-Aircraft, Letters, DomainNet, and
iNaturalist can be found in Tables 33, 34, 35, 36, 37,
38, and 39, respectively.

FSA-FiLM vs GDumb The trade-off between ac-
curacy and training time for different continual learn-
ing methods on CIFAR100 and CORE50 is illustrated
in Fig. 1. Several different memory sizes are used for
GDumb. FSA-FiLM attains the highest accuracy (and
the lowest PPDR) ≈13.5x faster than GDumb with a
5k memory buffer on CIFAR100 while on CORE50,
GDumb requires at least a 5K memory buffer to out-
perform FSA-FiLM and ≈3x more training time than
FSA-FiLM. Notice that FACT is unable to perform
well under this setting due to the small number of avail-
able classes in the first session.



Superclass

Insects Mammals Mollusks Plants Reptiles
Session 6 7 8 9 10

Classes

Aptera fusca Antilocapra americana Ensis leei Bryum argenteum Alligator mississippiensis
Panchlora nivea Balaenoptera acutorostrata Clinocardium nuttallii Rhodobryum ontariense Caiman crocodilus

Pycnoscelus surinamensis Megaptera novaeangliae Dinocardium robustum Leucolepis acanthoneura Crocodylus acutus
Blatta orientalis Aepyceros melampus Tridacna maxima Plagiomnium cuspidatum Crocodylus moreletii

Periplaneta americana Alcelaphus buselaphus Donax gouldii Plagiomnium insigne Crocodylus niloticus
Periplaneta australasiae Antidorcas marsupialis Donax variabilis Rhizomnium glabrescens Crocodylus porosus
Periplaneta fuliginosa Bison bison Dreissena polymorpha Dicranum scoparium Sphenodon punctatus

Pseudomops septentrionalis Bos taurus Mya arenaria Ceratodon purpureus Acanthocercus atricollis
Arrhenodes minutus Boselaphus tragocamelus Cyrtopleura costata Leucobryum glaucum Agama atra
Agrilus planipennis Bubalus bubalis Geukensia demissa Funaria hygrometrica Agama picticauda

Table 5. Classes used from iNaturalist to create the few-shot CIL setting. The first part can be found in Table 4.
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Figure 1. Last session’s test accuracy (↑) and run time (↓) for the “high-shot CIL” setting. GDumb-m refers to memory
buffer sizes m ∈ {200, 500, 1k, 2k, 5k, 10k∗}. We use a memory buffer of 10k images only for CORE50.

Dataset NCM LDA Linear

Caltech101 85.7 ±0.9 88.2 ±0.8 87.2 ±0.7

CIFAR100 40.2 ±1.5 42.7 ±1.6 42.3 ±1.3

Flowers102 71.5 ±0.6 76.1 ±0.4 75.7 ±0.8

Pets 83.0 ±1.5 82.4 ±1.6 82.5 ±1.5

Sun397 41.0 ±0.9 41.9 ±1.0 42.9 ±0.7

SVHN 13.5 ±1.6 16.5 ±1.1 15.0 ±1.4

DTD 48.2 ±1.0 48.9 ±1.7 49.2 ±1.8

EuroSAT 72.1 ±1.9 76.3 ±1.8 74.6 ±2.0

Resics45 55.2 ±1.2 58.8 ±1.4 58.9 ±1.2

Patch Camelyon 59.6 ±8.7 59.8 ±7.2 59.0 ±6.4

Retinopathy 26.3 ±2.5 25.6 ±1.6 24.3 ±1.7

CLEVR-count 22.2 ±0.8 23.1 ±1.1 22.6 ±0.7

CLEVR-dist 23.0 ±2.7 24.5 ±2.3 24.4 ±2.2

dSprites-loc 7.5 ±0.7 8.5 ±0.6 7.3 ±0.6

dSprites-ori 13.1 ±1.2 16.2 ±0.8 14.8 ±1.1

SmallNORB-azi 6.8 ±0.6 9.3 ±0.8 8.8 ±1.0

SmallNORB-elev 13.0 ±1.5 15.1 ±0.6 14.5 ±0.9

DMLab 22.2 ±0.8 22.1 ±1.3 23.8 ±0.8

KITTI-dist 50.0 ±1.3 51.4 ±2.7 51.9 ±3.1

FGVC-Aircraft 19.4 ±0.6 22.1 ±1.0 22.7 ±0.6

Cars 20.0 ±0.6 22.6 ±0.6 22.0 ±0.7

Letters 28.3 ±1.8 36.1 ±2.1 34.0 ±1.3

Average acc 37.4 39.5 39.0

Table 6. Accuracy comparison between NCM, LDA, and
Linear head without using any adaptation (NA method).
The reported results are based on 5 shots and averaged over
5 runs (mean±std). A pre-trained EfficientNet-B0 is used
as a backbone in all cases.

Dataset NCM LDA Linear

Caltech101 88.5 ±0.9 90.0 ±0.8 89.6 ±0.7

CIFAR100 45.8 ±1.0 50.1 ±1.5 49.2 ±1.1

Flowers102 77.2 ±0.2 83.9 ±0.3 81.9 ±0.2

Pets 85.8 ±1.0 86.4 ±0.7 86.1 ±0.5

Sun397 47.1 ±1.3 49.0 ±1.3 49.7 ±0.8

SVHN 15.5 ±2.3 19.4 ±2.9 18.1 ±2.6

DTD 53.8 ±0.3 55.6 ±0.6 56.3 ±0.7

EuroSAT 76.6 ±1.2 82.1 ±0.9 80.2 ±0.9

Resics45 60.7 ±1.3 65.5 ±1.1 65.9 ±1.2

Patch Camelyon 63.0 ±5.3 66.5 ±3.7 65.3 ±4.7

Retinopathy 27.5 ±3.2 27.1 ±2.2 26.1 ±1.8

CLEVR-count 24.0 ±0.4 25.7 ±0.6 24.9 ±0.6

CLEVR-dist 24.2 ±1.2 26.3 ±1.1 26.3 ±1.4

dSprites-loc 7.5 ±0.5 8.7 ±0.3 7.9 ±0.3

dSprites-ori 14.2 ±0.9 18.2 ±0.7 16.4 ±1.0

SmallNORB-azi 8.4 ±0.4 9.5 ±1.1 9.5 ±0.7

SmallNORB-elev 13.6 ±0.8 16.5 ±1.1 16.2 ±0.7

DMLab 25.1 ±1.1 25.7 ±1.2 27.2 ±1.3

KITTI-dist 50.1 ±0.8 52.9 ±1.5 52.0 ±1.8

FGVC-Aircraft 23.1 ±0.4 28.5 ±0.4 27.0 ±0.4

Cars 25.4 ±0.5 30.4 ±0.5 30.7 ±0.4

Letters 34.2 ±0.8 45.6 ±0.8 45.2 ±1.4

Average acc 40.5 43.8 43.3

Table 7. Accuracy comparison between NCM, LDA, and
Linear head without using any adaptation (NA method).
The reported results are based on 10 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.



Dataset NCM LDA Linear

Caltech101 90.4 ±0.6 91.9 ±0.5 93.0 ±0.4

CIFAR100 52.0 ±0.9 57.4 ±1.0 60.9 ±1.0

Flowers102 77.2 ±0.2 83.9 ±0.3 81.9 ±0.2

Pets 88.2 ±0.3 89.5 ±0.4 89.9 ±0.6

Sun397 52.6 ±1.1 55.9 ±1.0 58.4 ±0.8

SVHN 19.3 ±1.7 28.3 ±1.1 28.9 ±1.1

DTD 58.5 ±0.0 61.1 ±0.0 65.4 ±0.2

EuroSAT 81.7 ±0.6 87.7 ±0.9 88.2 ±0.7

Resics45 66.6 ±0.7 73.5 ±0.9 78.2 ±0.7

Patch Camelyon 70.9 ±5.4 76.2 ±1.1 76.2 ±1.5

Retinopathy 29.2 ±2.2 32.9 ±2.2 32.9 ±1.9

CLEVR-count 26.3 ±1.5 30.1 ±1.0 31.2 ±1.0

CLEVR-dist 27.8 ±0.8 32.2 ±1.1 31.7 ±1.0

dSprites-loc 9.3 ±0.8 11.9 ±0.4 9.9 ±0.6

dSprites-ori 14.9 ±0.5 20.1 ±1.1 18.7 ±2.2

SmallNORB-azi 9.5 ±0.6 12.3 ±0.8 12.1 ±1.1

SmallNORB-elev 15.2 ±1.3 19.1 ±0.7 20.0 ±0.5

DMLab 29.1 ±0.3 30.6 ±0.3 32.3 ±0.7

KITTI-dist 53.2 ±0.9 61.4 ±2.3 60.7 ±3.2

FGVC-Aircraft 30.9 ±0.5 41.0 ±0.7 46.1 ±0.6

Cars 33.7 ±0.0 43.3 ±0.0 46.5 ±0.2

Letters 43.1 ±1.0 57.6 ±0.8 65.9 ±1.1

Average acc 44.5 49.9 51.3

Table 8. Accuracy comparison between NCM, LDA, and
Linear head without using any adaptation (NA method).
The reported results are based on 50 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.

Dataset NCM LDA Linear

Caltech101 90.4 ±0.6 91.9 ±0.5 93.0 ±0.4

CIFAR100 53.5 ±1.6 68.2 ±1.7 68.3 ±0.8

Flowers102 77.2 ±0.2 83.9 ±0.3 81.9 ±0.3

Pets 88.7 ±0.2 89.9 ±0.2 90.7 ±0.3

Sun397 53.9 ±1.1 56.9 ±1.2 58.4 ±0.6

SVHN 24.5 ±0.4 36.8 ±0.6 40.8 ±0.8

DTD 58.5 ±0.0 61.1 ±0.0 65.3 ±0.3

EuroSAT 82.4 ±0.3 88.1 ±0.1 93.2 ±0.2

Resics45 67.1 ±0.2 74.6 ±0.2 81.8 ±0.4

Patch Camelyon 72.9 ±0.0 79.1 ±0.0 79.7 ±0.5

Retinopathy 33.0 ±0.3 40.4 ±0.3 46.9 ±0.4

CLEVR-count 28.9 ±0.3 40.1 ±0.4 50.3 ±0.3

CLEVR-dist 29.2 ±0.5 38.7 ±0.4 45.5 ±1.3

dSprites-loc 14.6 ±0.6 20.9 ±0.7 30.8 ±1.4

dSprites-ori 15.5 ±0.4 22.5 ±0.6 33.3 ±0.9

SmallNORB-azi 11.5 ±0.5 14.1 ±0.7 14.2 ±0.7

SmallNORB-elev 19.3 ±0.4 24.1 ±0.5 26.3 ±0.8

DMLab 35.4 ±0.4 39.7 ±0.3 44.4 ±0.4

KITTI-dist 53.4 ±0.0 66.7 ±0.0 69.8 ±0.4

FGVC-Aircraft 31.8 ±0.0 41.3 ±0.0 45.8 ±0.4

Cars 33.7 ±0.0 43.3 ±0.0 46.6 ±0.3

Letters 44.9 ±1.3 59.7 ±0.5 69.5 ±0.5

Average acc 46.4 53.4 58.0

Table 9. Accuracy comparison between NCM, LDA, and
Linear head without using any adaptation (NA method).
The reported results are based on the full training dataset
and averaged over 5 runs (mean±std). A pre-trained
EfficientNet-B0 is used as a backbone in all cases.



Dataset NCM LDA Linear

Caltech101 86.6 ±0.5 89.0 ±0.6 88.5 ±0.4

CIFAR100 47.4 ±1.2 51.8 ±1.3 50.3 ±1.4

Flowers102 80.2 ±0.4 85.0 ±0.8 83.5 ±0.5

Pets 81.8 ±1.5 81.8 ±1.7 82.6 ±1.6

Sun397 40.9 ±0.7 40.9 ±0.7 38.1 ±1.0

SVHN 28.6 ±3.8 31.7 ±3.7 30.1 ±4.5

DTD 49.6 ±1.5 50.2 ±0.9 50.8 ±1.3

EuroSAT 75.8 ±1.5 78.1 ±1.2 78.3 ±1.2

Resics45 62.7 ±1.1 64.7 ±1.2 65.8 ±0.7

Patch Camelyon 64.7 ±5.8 64.9 ±6.6 62.9 ±5.4

Retinopathy 27.4 ±3.1 26.0 ±2.0 25.2 ±2.4

CLEVR-count 24.0 ±1.3 23.4 ±1.4 23.2 ±0.7

CLEVR-dist 23.1 ±1.4 23.1 ±1.1 24.0 ±1.3

dSprites-loc 19.5 ±1.8 19.8 ±2.0 16.7 ±5.9

dSprites-ori 20.6 ±1.6 26.5 ±0.8 25.5 ±1.4

SmallNORB-azi 9.0 ±1.0 10.1 ±0.6 10.3 ±0.6

SmallNORB-elev 14.6 ±0.9 15.4 ±0.7 15.5 ±0.8

DMLab 23.4 ±2.3 23.3 ±1.9 24.8 ±0.9

KITTI-dist 55.7 ±3.6 52.7 ±3.5 53.2 ±1.8

FGVC-Aircraft 28.7 ±0.7 32.6 ±0.9 33.1 ±1.3

Cars 22.7 ±0.5 28.1 ±0.4 27.2 ±0.7

Letters 52.2 ±2.9 55.9 ±2.5 56.4 ±3.2

Average acc 42.7 44.3 43.9

Table 10. Accuracy comparison between NCM, LDA, and
Linear head using FiLM adaptation (A-FiLM method).
The reported results are based on 5 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.

Dataset NCM LDA Linear

Caltech101 89.9 ±0.2 91.5 ±0.4 91.1 ±0.6

CIFAR100 59.2 ±1.7 62.8 ±1.1 60.6 ±0.5

Flowers102 86.2 ±0.5 91.1 ±0.3 91.2 ±0.3

Pets 85.8 ±1.0 86.3 ±0.8 86.6 ±0.8

Sun397 48.5 ±0.8 49.3 ±0.6 44.8 ±1.2

SVHN 40.3 ±2.5 45.3 ±3.0 43.9 ±3.3

DTD 58.3 ±0.8 59.1 ±0.8 59.2 ±1.1

EuroSAT 81.9 ±1.4 84.4 ±1.6 83.5 ±0.7

Resics45 70.2 ±1.1 73.0 ±1.3 73.5 ±0.7

Patch Camelyon 69.2 ±5.2 68.5 ±6.1 67.1 ±4.8

Retinopathy 26.7 ±1.3 26.9 ±1.1 25.6 ±1.0

CLEVR-count 30.1 ±1.9 27.6 ±1.6 29.2 ±1.2

CLEVR-dist 25.3 ±1.7 26.2 ±1.3 26.5 ±0.7

dSprites-loc 26.2 ±11.4 26.1 ±10.6 24.2 ±14.7

dSprites-ori 26.7 ±2.4 34.0 ±2.6 33.8 ±2.4

SmallNORB-azi 11.0 ±0.8 11.7 ±1.2 11.3 ±1.4

SmallNORB-elev 15.6 ±0.7 16.3 ±0.4 16.6 ±0.3

DMLab 27.2 ±1.9 26.6 ±1.5 29.3 ±1.7

KITTI-dist 56.7 ±3.7 55.4 ±3.7 56.2 ±4.5

FGVC-Aircraft 37.5 ±0.7 43.3 ±1.1 43.4 ±1.5

Cars 36.3 ±0.8 43.1 ±1.0 42.1 ±1.0

Letters 64.0 ±1.5 67.5 ±1.3 68.1 ±1.4

Average acc 48.8 50.7 50.4

Table 11. Accuracy comparison between NCM, LDA, and
Linear head using FiLM adaptation (A-FiLM method).
The reported results are based on 10 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.



Dataset NCM LDA Linear

Caltech101 93.4 ±0.7 93.8 ±0.5 93.5 ±1.0

CIFAR100 72.6 ±0.7 73.8 ±0.9 73.7 ±0.5

Flowers102 86.2 ±0.5 91.1 ±0.3 91.2 ±0.3

Pets 89.3 ±0.6 89.9 ±0.7 89.9 ±0.7

Sun397 58.5 ±0.7 59.7 ±0.6 60.8 ±0.7

SVHN 73.9 ±1.1 77.2 ±0.8 76.8 ±1.0

DTD 66.8 ±0.3 68.4 ±0.2 68.7 ±0.7

EuroSAT 91.0 ±0.6 93.0 ±0.6 93.2 ±0.6

Resics45 81.7 ±0.2 83.4 ±0.6 85.3 ±0.6

Patch Camelyon 78.5 ±2.0 77.9 ±2.4 78.1 ±2.4

Retinopathy 34.2 ±1.6 35.2 ±1.2 33.5 ±1.9

CLEVR-count 56.8 ±0.9 46.6 ±1.1 53.1 ±1.1

CLEVR-dist 40.2 ±1.8 38.8 ±1.0 41.2 ±1.5

dSprites-loc 83.6 ±5.4 83.7 ±5.6 81.6 ±5.9

dSprites-ori 41.2 ±0.8 52.1 ±1.3 53.8 ±1.4

SmallNORB-azi 17.0 ±0.8 16.8 ±0.8 17.5 ±1.0

SmallNORB-elev 23.1 ±1.2 22.9 ±0.5 24.0 ±0.6

DMLab 35.0 ±0.6 34.6 ±0.6 35.8 ±0.4

KITTI-dist 67.3 ±2.1 66.8 ±3.0 66.5 ±2.7

FGVC-Aircraft 60.6 ±0.9 65.1 ±0.7 68.0 ±0.6

Cars 60.9 ±0.2 67.9 ±0.2 74.5 ±0.4

Letters 76.7 ±0.5 79.7 ±0.4 81.9 ±0.8

Average acc 63.1 64.5 65.6

Table 12. Accuracy comparison between NCM, LDA, and
Linear head using FiLM adaptation (A-FiLM method).
The reported results are based on 50 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.

Dataset NCM LDA Linear

Caltech101 93.6 ±0.4 94.4 ±0.3 94.1 ±0.6

CIFAR100 77.4 ±1.1 78.2 ±1.1 82.1 ±1.1

Flowers102 88.6 ±0.6 91.2 ±0.4 90.6 ±0.5

Pets 90.2 ±0.2 90.8 ±0.3 91.0 ±0.4

Sun397 61.4 ±0.5 62.1 ±0.3 63.7 ±0.9

SVHN 92.9 ±0.4 93.1 ±0.4 95.1 ±0.4

DTD 64.8 ±0.2 66.8 ±0.5 67.6 ±0.6

EuroSAT 96.5 ±0.3 97.2 ±0.1 98.1 ±0.3

Resics45 88.0 ±0.3 89.4 ±0.4 94.2 ±0.4

Patch Camelyon 84.3 ±1.5 85.9 ±1.2 85.8 ±1.6

Retinopathy 52.3 ±0.7 52.6 ±0.8 59.5 ±0.8

CLEVR-count 94.5 ±0.2 93.5 ±0.7 95.3 ±0.6

CLEVR-dist 79.3 ±1.4 80.1 ±2.3 84.5 ±2.0

dSprites-loc 98.0 ±0.5 98.5 ±0.6 99.3 ±0.4

dSprites-ori 69.8 ±2.4 80.0 ±0.8 90.7 ±0.8

SmallNORB-azi 26.1 ±1.2 24.4 ±0.6 23.5 ±0.5

SmallNORB-elev 47.0 ±0.9 47.9 ±1.2 47.9 ±1.4

DMLab 60.2 ±0.6 61.3 ±0.5 65.8 ±1.0

KITTI-dist 78.5 ±0.9 80.1 ±1.1 79.7 ±0.4

FGVC-Aircraft 63.3 ±0.2 67.5 ±0.4 71.5 ±0.5

Cars 60.1 ±0.1 67.3 ±0.3 73.6 ±0.3

Letters 77.1 ±0.3 81.7 ±0.4 85.2 ±0.3

Average acc 74.7 76.6 79.0

Table 13. Accuracy comparison between NCM, LDA, and
Linear head using FiLM adaptation (A-FiLM method).
The reported results are based on the full training dataset
and averaged over 5 runs (mean±std). A pre-trained
EfficientNet-B0 is used as a backbone in all cases.



Dataset NCM LDA Linear

Caltech101 87.1 ±0.6 89.4 ±0.7 86.1 ±0.9

CIFAR100 48.1 ±0.7 49.3 ±1.1 49.2 ±1.0

Flowers102 81.5 ±0.8 81.7 ±0.6 83.6 ±0.8

Pets 80.9 ±1.7 80.8 ±1.7 71.1 ±1.2

Sun397 35.5 ±0.3 35.2 ±0.5 37.2 ±0.3

SVHN 19.1 ±1.5 19.6 ±1.2 19.2 ±1.8

DTD 48.4 ±1.3 49.0 ±1.3 41.6 ±0.8

EuroSAT 75.4 ±4.1 76.7 ±2.9 78.5 ±1.2

Resics45 61.7 ±2.3 62.3 ±2.5 63.5 ±2.5

Patch Camelyon 59.2 ±4.9 59.4 ±4.9 60.5 ±7.0

Retinopathy 24.6 ±2.7 24.5 ±2.5 26.1 ±2.4

CLEVR-count 23.9 ±2.9 23.5 ±3.0 24.2 ±3.1

CLEVR-dist 25.1 ±3.3 25.6 ±3.5 25.6 ±2.4

dSprites-loc 26.1 ±2.7 27.1 ±1.6 25.5 ±3.6

dSprites-ori 18.3 ±1.6 19.9 ±1.5 15.6 ±1.9

SmallNORB-azi 10.0 ±0.7 10.4 ±0.8 10.3 ±0.9

SmallNORB-elev 15.8 ±1.1 16.2 ±1.1 15.6 ±0.8

DMLab 21.3 ±1.6 22.1 ±1.3 22.6 ±0.9

KITTI-dist 51.1 ±2.5 52.8 ±2.5 52.1 ±2.0

FGVC-Aircraft 23.8 ±0.7 23.6 ±0.8 25.1 ±1.0

Cars 23.1 ±0.3 23.5 ±0.3 25.3 ±0.5

Letters 35.5 ±3.3 35.7 ±3.3 37.0 ±3.2

Average acc 40.7 41.3 40.7

Table 14. Accuracy comparison between NCM, LDA, and
Linear head using full-body adaptation (A-FB method).
The reported results are based on 5 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.

Dataset NCM LDA Linear

Caltech101 90.4 ±0.8 91.7 ±0.7 89.3 ±0.8

CIFAR100 58.8 ±0.4 59.5 ±0.3 59.5 ±0.8

Flowers102 89.9 ±0.6 90.0 ±0.5 91.3 ±0.6

Pets 85.5 ±0.9 85.7 ±0.5 78.4 ±1.7

Sun397 45.2 ±0.7 45.0 ±0.4 46.3 ±0.3

SVHN 26.4 ±3.4 27.1 ±3.8 26.4 ±3.6

DTD 55.2 ±0.8 56.7 ±1.0 48.0 ±0.8

EuroSAT 83.9 ±1.5 84.9 ±1.5 86.3 ±1.5

Resics45 72.6 ±1.2 72.8 ±1.3 74.3 ±1.1

Patch Camelyon 61.3 ±4.5 61.2 ±4.5 63.0 ±5.1

Retinopathy 25.1 ±4.2 24.6 ±3.3 27.5 ±2.0

CLEVR-count 28.0 ±1.9 27.7 ±2.0 28.7 ±2.1

CLEVR-dist 30.1 ±4.1 30.0 ±4.2 29.9 ±3.6

dSprites-loc 42.9 ±2.7 44.8 ±1.3 42.2 ±3.1

dSprites-ori 26.4 ±6.5 29.6 ±6.8 22.9 ±10.4

SmallNORB-azi 12.2 ±0.6 11.5 ±0.8 11.7 ±0.6

SmallNORB-elev 18.2 ±1.3 18.3 ±1.5 17.3 ±1.1

DMLab 25.3 ±1.2 25.6 ±1.3 26.1 ±1.1

KITTI-dist 53.5 ±2.3 54.9 ±1.3 52.2 ±2.1

FGVC-Aircraft 37.4 ±0.5 36.7 ±0.6 38.6 ±0.4

Cars 43.8 ±0.8 43.5 ±0.6 46.9 ±0.8

Letters 55.8 ±1.5 55.2 ±1.3 56.6 ±1.4

Average acc 48.5 49.0 48.3

Table 15. Accuracy comparison between NCM, LDA, and
Linear head using full-body adaptation (A-FB method).
The reported results are based on 10 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.



Dataset NCM LDA Linear

Caltech101 92.8 ±0.3 93.9 ±0.3 92.6 ±0.5

CIFAR100 72.9 ±0.9 73.1 ±0.7 72.7 ±0.8

Flowers102 89.9 ±0.6 90.0 ±0.5 91.3 ±0.6

Pets 88.7 ±0.5 89.6 ±0.6 84.9 ±1.1

Sun397 59.9 ±0.6 60.4 ±0.6 62.4 ±0.4

SVHN 63.9 ±1.5 64.5 ±1.3 64.6 ±1.6

DTD 60.9 ±0.3 64.4 ±0.2 57.4 ±0.7

EuroSAT 93.8 ±0.5 94.1 ±0.6 93.9 ±1.0

Resics45 87.4 ±0.8 87.6 ±0.7 88.0 ±0.8

Patch Camelyon 71.6 ±1.7 72.2 ±1.8 74.4 ±1.8

Retinopathy 31.1 ±3.3 31.3 ±2.9 31.9 ±2.2

CLEVR-count 46.5 ±1.0 45.2 ±1.1 45.4 ±1.9

CLEVR-dist 44.0 ±2.1 44.7 ±2.2 45.7 ±2.2

dSprites-loc 85.3 ±4.0 87.1 ±2.4 85.2 ±3.2

dSprites-ori 42.6 ±3.2 44.8 ±2.3 39.3 ±4.7

SmallNORB-azi 19.6 ±0.6 18.3 ±0.7 19.1 ±1.1

SmallNORB-elev 31.4 ±1.4 31.3 ±1.7 31.3 ±2.1

DMLab 32.6 ±1.4 32.7 ±1.6 34.0 ±0.9

KITTI-dist 65.8 ±2.1 66.9 ±2.2 65.8 ±1.8

FGVC-Aircraft 74.2 ±0.8 73.5 ±0.4 74.6 ±0.3

Cars 79.3 ±0.1 79.4 ±0.1 81.5 ±0.2

Letters 82.1 ±0.7 82.3 ±0.9 83.1 ±0.6

Average acc 64.4 64.9 64.5

Table 16. Accuracy comparison between NCM, LDA, and
Linear head using full-body adaptation (A-FB method).
The reported results are based on 50 shots and averaged
over 5 runs (mean±std). A pre-trained EfficientNet-B0 is
used as a backbone in all cases.

Dataset NCM LDA Linear

Caltech101 94.2 ±0.5 94.6 ±0.3 94.8 ±0.3

CIFAR100 84.2 ±1.2 84.3 ±0.9 85.0 ±1.1

Flowers102 90.3 ±0.3 90.3 ±0.4 91.4 ±0.5

Pets 89.7 ±0.4 89.5 ±0.3 90.0 ±0.4

Sun397 65.9 ±0.3 66.1 ±1.0 66.7 ±0.4

SVHN 95.6 ±0.2 95.3 ±0.5 95.5 ±0.3

DTD 67.6 ±0.8 68.1 ±0.4 68.5 ±0.5

EuroSAT 98.1 ±0.2 98.5 ±0.3 98.6 ±0.2

Resics45 95.3 ±0.1 95.5 ±0.2 95.9 ±0.1

Patch Camelyon 81.1 ±2.2 85.0 ±0.7 86.5 ±0.9

Retinopathy 55.8 ±0.9 56.1 ±1.4 57.7 ±0.7

CLEVR-count 98.5 ±0.3 98.7 ±0.3 98.3 ±0.3

CLEVR-dist 89.0 ±0.6 89.0 ±0.6 89.4 ±1.5

dSprites-loc 99.7 ±0.3 99.8 ±0.1 99.6 ±0.4

dSprites-ori 89.2 ±1.0 94.0 ±0.7 93.0 ±1.1

SmallNORB-azi 29.8 ±1.0 28.7 ±0.6 28.9 ±0.8

SmallNORB-elev 74.3 ±4.3 81.8 ±3.1 77.2 ±4.6

DMLab 64.8 ±0.6 65.7 ±0.4 65.6 ±0.7

KITTI-dist 78.2 ±0.7 82.1 ±0.6 82.3 ±1.1

FGVC-Aircraft 76.0 ±0.5 75.8 ±0.7 76.7 ±0.8

Cars 79.1 ±0.1 78.9 ±0.2 81.3 ±0.2

Letters 86.0 ±0.5 85.7 ±0.5 87.2 ±0.3

Average acc 81.0 82.0 82.3

Table 17. Accuracy comparison between NCM, LDA, and
Linear head using full-body adaptation (A-FB method).
The reported results are based on the full training dataset
and averaged over 5 runs (mean±std). A pre-trained
EfficientNet-B0 is used as a backbone in all cases.



Dataset NA(RN)FiLM(RN)NA(EN)FiLM(EN)

Caltech101 80.9 ±0.7 81.1 ±0.7 88.2 ±0.8 89.0 ±0.6

CIFAR100 40.4 ±0.5 42.2 ±0.9 42.7 ±1.6 51.8 ±1.3

Flowers102 72.6 ±0.8 79.4 ±1.4 76.1 ±0.4 85.0 ±0.8

Pets 76.9 ±1.2 74.5 ±1.4 82.4 ±1.6 81.8 ±1.7

Sun397 35.1 ±0.9 29.1 ±0.7 41.9 ±1.0 40.9 ±0.7

SVHN 20.9 ±1.3 28.8 ±2.7 16.5 ±1.1 31.7 ±3.7

DTD 43.2 ±1.7 42.2 ±0.7 48.9 ±1.7 50.2 ±0.9

EuroSAT 75.1 ±1.9 79.3 ±1.2 76.3 ±1.8 78.1 ±1.2

Resics45 56.8 ±1.3 57.0 ±1.2 58.8 ±1.4 64.7 ±1.2

Patch Camelyon 62.4 ±5.5 64.6 ±7.2 59.8 ±7.2 64.9 ±6.6

Retinopathy 23.0 ±2.5 23.6 ±1.7 25.6 ±1.6 26.0 ±2.0

CLEVR-count 21.6 ±1.7 23.0 ±1.3 23.1 ±1.1 23.4 ±1.4

CLEVR-dist 22.9 ±1.4 24.4 ±1.3 24.5 ±2.3 23.1 ±1.1

dSprites-loc 13.0 ±1.0 15.9 ±1.0 8.5 ±0.6 19.8 ±2.0

dSprites-ori 14.4 ±0.6 22.9 ±0.8 16.2 ±0.8 26.5 ±0.8

SmallNORB-azi 9.4 ±0.8 9.8 ±1.1 9.3 ±0.8 10.1 ±0.6

SmallNORB-elev 15.8 ±0.7 15.9 ±0.7 15.1 ±0.6 15.4 ±0.7

DMLab 21.6 ±1.5 22.1 ±1.8 22.1 ±1.3 23.3 ±1.9

KITTI-dist 54.3 ±2.8 54.0 ±2.5 51.4 ±2.7 52.7 ±3.5

FGVC-Aircraft 19.1 ±0.9 20.3 ±0.7 22.1 ±1.0 32.6 ±0.9

Cars 14.8 ±0.5 13.9 ±0.3 22.6 ±0.6 28.1 ±0.4

Letters 32.4 ±1.9 45.5 ±2.4 36.1 ±2.1 55.9 ±2.5

Average acc 37.6 39.5 39.5 44.3

Table 18. Accuracy comparison between NA and FiLM
methods in offline mode using either a pre-trained ResNet-
18 (RN) or a pre-trained EfficientNet-B0 (EN) backbone.
We use an LDA head. The reported results are based on 5
shots. Results are averaged over 5 runs (mean±std).

Dataset NA(RN)FiLM(RN)NA(EN)FiLM(EN)

Caltech101 85.0 ±0.6 86.6 ±0.6 90.0 ±0.8 91.5 ±0.4

CIFAR100 48.5 ±0.4 52.2 ±0.8 50.1 ±1.5 62.8 ±1.1

Flowers102 81.2 ±0.7 87.1 ±0.2 83.9 ±0.3 91.1 ±0.3

Pets 82.3 ±0.7 80.5 ±1.1 86.4 ±0.7 86.3 ±0.8

Sun397 42.8 ±0.9 36.3 ±1.0 49.0 ±1.3 49.3 ±0.6

SVHN 24.6 ±1.7 35.8 ±4.1 19.4 ±2.9 45.3 ±3.0

DTD 51.9 ±0.9 50.5 ±0.6 55.6 ±0.6 59.1 ±0.8

EuroSAT 82.0 ±0.7 85.4 ±0.9 82.1 ±0.9 84.4 ±1.6

Resics45 64.8 ±1.5 67.2 ±2.0 65.5 ±1.1 73.0 ±1.3

Patch Camelyon 66.9 ±3.7 68.8 ±3.7 66.5 ±3.7 68.5 ±6.1

Retinopathy 25.5 ±1.3 25.8 ±3.7 27.1 ±2.2 26.9 ±1.1

CLEVR-count 23.8 ±0.7 25.6 ±2.0 25.7 ±0.6 27.6 ±1.6

CLEVR-dist 24.9 ±0.7 27.2 ±1.2 26.3 ±1.1 26.2 ±1.3

dSprites-loc 14.7 ±0.4 25.4 ±1.5 8.7 ±0.3 26.1 ±10.6

dSprites-ori 16.6 ±0.9 29.7 ±1.3 18.2 ±0.7 34.0 ±2.6

SmallNORB-azi 10.4 ±0.9 12.2 ±1.1 9.5 ±1.1 11.7 ±1.2

SmallNORB-elev 16.9 ±0.8 17.2 ±1.1 16.5 ±1.1 16.3 ±0.4

DMLab 24.6 ±1.8 25.6 ±1.4 25.7 ±1.2 26.6 ±1.5

KITTI-dist 53.0 ±2.0 55.9 ±3.5 52.9 ±1.5 55.4 ±3.7

FGVC-Aircraft 25.9 ±0.8 29.5 ±0.8 28.5 ±0.4 43.3 ±1.1

Cars 21.5 ±0.5 24.0 ±0.2 30.4 ±0.5 43.1 ±1.0

Letters 41.5 ±1.2 62.7 ±1.9 45.6 ±0.8 67.5 ±1.3

Average acc 42.2 46.0 43.8 50.7

Table 19. Accuracy comparison between NA and FiLM
methods in offline mode using either a pre-trained ResNet-
18 (RN) or a pre-trained EfficientNet-B0 (EN) backbone.
We use an LDA head. The reported results are based on
10 shots. Results are averaged over 5 runs (mean±std).



Dataset NA(RN)FiLM(RN)NA(EN)FiLM(EN)

Caltech101 88.0 ±0.3 87.7 ±0.7 91.9 ±0.5 93.8 ±0.5

CIFAR100 58.2 ±0.9 61.8 ±0.7 57.4 ±1.0 73.8 ±0.9

Flowers102 81.2 ±0.7 87.1 ±0.2 83.9 ±0.3 91.1 ±0.3

Pets 86.9 ±0.4 86.8 ±0.6 89.5 ±0.4 89.9 ±0.7

Sun397 51.4 ±1.3 47.8 ±0.9 55.9 ±1.0 59.7 ±0.6

SVHN 37.3 ±0.8 74.5 ±0.9 28.3 ±1.1 77.2 ±0.8

DTD 59.9 ±0.0 59.3 ±0.6 61.1 ±0.0 68.4 ±0.2

EuroSAT 88.3 ±0.5 92.6 ±0.5 87.7 ±0.9 93.0 ±0.6

Resics45 73.7 ±1.1 77.5 ±1.1 73.5 ±0.9 83.4 ±0.6

Patch Camelyon 76.3 ±0.9 77.4 ±1.1 76.2 ±1.1 77.9 ±2.4

Retinopathy 29.2 ±2.1 30.4 ±1.0 32.9 ±2.2 35.2 ±1.2

CLEVR-count 29.5 ±1.3 39.9 ±1.4 30.1 ±1.0 46.6 ±1.1

CLEVR-dist 31.7 ±0.8 45.3 ±2.6 32.2 ±1.1 38.8 ±1.0

dSprites-loc 21.8 ±0.6 70.2 ±2.0 11.9 ±0.4 83.7 ±5.6

dSprites-ori 20.8 ±0.4 52.1 ±1.5 20.1 ±1.1 52.1 ±1.3

SmallNORB-azi 13.9 ±0.5 16.4 ±0.7 12.3 ±0.8 16.8 ±0.8

SmallNORB-elev 21.4 ±1.0 25.1 ±0.6 19.1 ±0.7 22.9 ±0.5

DMLab 29.7 ±0.5 31.6 ±0.9 30.6 ±0.3 34.6 ±0.6

KITTI-dist 62.0 ±3.5 66.0 ±2.7 61.4 ±2.3 66.8 ±3.0

FGVC-Aircraft 38.9 ±0.5 53.1 ±0.3 41.0 ±0.7 65.1 ±0.7

Cars 34.4 ±0.0 49.5 ±0.2 43.3 ±0.0 67.9 ±0.2

Letters 56.1 ±1.2 77.7 ±1.3 57.6 ±0.8 79.7 ±0.4

Average acc 49.6 59.5 49.9 64.5

Table 20. Accuracy comparison between NA and FiLM
methods in offline mode using either a pre-trained ResNet-
18 (RN) or a pre-trained EfficientNet-B0 (EN) backbone.
We use an LDA head. The reported results are based on
50 shots. Results are averaged over 5 runs (mean±std).

Dataset NA Meta-Learn FiLM Full-body

Caltech101 88.2 ±0.8 86.7 ±0.9 89.0 ±0.6 89.4 ±0.7

CIFAR100 42.7 ±1.6 42.1 ±1.3 51.8 ±1.3 49.3 ±1.1

Flowers102 76.1 ±0.4 78.2 ±0.4 85.0 ±0.8 81.7 ±0.6

Pets 82.4 ±1.6 83.8 ±1.0 81.8 ±1.7 80.8 ±1.7

Sun397 41.9 ±1.0 40.2 ±0.6 40.9 ±0.7 35.2 ±0.5

SVHN 16.5 ±1.1 27.4 ±3.6 31.7 ±3.7 19.6 ±1.2

DTD 48.9 ±1.7 50.5 ±1.7 50.2 ±0.9 49.0 ±1.3

EuroSAT 76.3 ±1.8 75.2 ±1.5 78.1 ±1.2 76.7 ±2.9

Resics45 58.8 ±1.4 62.7 ±1.0 64.7 ±1.2 62.3 ±2.5

Patch Camelyon 59.8 ±7.2 64.2 ±7.3 64.9 ±6.6 59.4 ±4.9

Retinopathy 25.6 ±1.6 26.8 ±3.5 26.0 ±2.0 24.5 ±2.5

CLEVR-count 23.1 ±1.1 22.6 ±0.8 23.4 ±1.4 23.5 ±3.0

CLEVR-dist 24.5 ±2.3 23.8 ±1.1 23.1 ±1.1 25.6 ±3.5

dSprites-loc 8.5 ±0.6 8.9 ±0.5 19.8 ±2.0 27.1 ±1.6

dSprites-ori 16.2 ±0.8 19.2 ±0.7 26.5 ±0.8 19.9 ±1.5

SmallNORB-azi 9.3 ±0.8 8.7 ±1.0 10.1 ±0.6 10.4 ±0.8

SmallNORB-elev 15.1 ±0.6 15.4 ±0.5 15.4 ±0.7 16.2 ±1.1

DMLab 22.1 ±1.3 24.9 ±1.5 23.3 ±1.9 22.1 ±1.3

KITTI-dist 51.4 ±2.7 55.0 ±1.5 52.7 ±3.5 52.8 ±2.5

FGVC-Aircraft 22.1 ±1.0 31.9 ±0.6 32.6 ±0.9 23.6 ±0.8

Cars 22.6 ±0.6 22.8 ±0.4 28.1 ±0.4 23.5 ±0.3

Letters 36.1 ±2.1 46.5 ±3.2 55.9 ±2.5 35.7 ±3.3

Average acc 39.5 41.7 44.3 41.3

Table 21. Accuracy comparison between different adap-
tation methods in offline mode using a pre-trained
EfficientNet-B0 backbone. We use an LDA head. The re-
ported results are based on 5 shots and averaged over 5
runs (mean±std).



Dataset NA Meta-Learn FiLM Full-body

Caltech101 90.0 ±0.8 89.1 ±0.3 91.5 ±0.4 91.7 ±0.7

CIFAR100 50.1 ±1.5 50.1 ±1.2 62.8 ±1.1 59.5 ±0.3

Flowers102 83.9 ±0.3 84.4 ±0.3 91.1 ±0.3 90.0 ±0.5

Pets 86.4 ±0.7 86.8 ±0.2 86.3 ±0.8 85.7 ±0.5

Sun397 49.0 ±1.3 46.3 ±0.9 49.3 ±0.6 45.0 ±0.4

SVHN 19.4 ±2.9 33.0 ±2.2 45.3 ±3.0 27.1 ±3.8

DTD 55.6 ±0.6 57.7 ±1.4 59.1 ±0.8 56.7 ±1.0

EuroSAT 82.1 ±0.9 81.2 ±0.7 84.4 ±1.6 84.9 ±1.5

Resics45 65.5 ±1.1 68.4 ±1.2 73.0 ±1.3 72.8 ±1.3

Patch Camelyon 66.5 ±3.7 67.5 ±5.5 68.5 ±6.1 61.2 ±4.5

Retinopathy 27.1 ±2.2 26.9 ±0.4 26.9 ±1.1 24.6 ±3.3

CLEVR-count 25.7 ±0.6 24.3 ±1.1 27.6 ±1.6 27.7 ±2.0

CLEVR-dist 26.3 ±1.1 25.5 ±0.8 26.2 ±1.3 30.0 ±4.2

dSprites-loc 8.7 ±0.3 8.9 ±0.4 26.1 ±10.6 44.8 ±1.3

dSprites-ori 18.2 ±0.7 20.4 ±1.2 34.0 ±2.6 29.6 ±6.8

SmallNORB-azi 9.5 ±1.1 10.5 ±0.2 11.7 ±1.2 11.5 ±0.8

SmallNORB-elev 16.5 ±1.1 15.8 ±0.6 16.3 ±0.4 18.3 ±1.5

DMLab 25.7 ±1.2 27.8 ±1.7 26.6 ±1.5 25.6 ±1.3

KITTI-dist 52.9 ±1.5 56.4 ±1.8 55.4 ±3.7 54.9 ±1.3

FGVC-Aircraft 28.5 ±0.4 39.0 ±0.8 43.3 ±1.1 36.7 ±0.6

Cars 30.4 ±0.5 29.8 ±0.1 43.1 ±1.0 43.5 ±0.6

Letters 45.6 ±0.8 54.5 ±1.5 67.5 ±1.3 55.2 ±1.3

Average acc 43.8 45.7 50.7 49.0

Table 22. Accuracy comparison between different adap-
tation methods in offline mode using a pre-trained
EfficientNet-B0 backbone. We use an LDA head. The re-
ported results are based on 10 shots and averaged over 5
runs (mean±std).

Dataset NA Meta-Learn FiLM Full-body

Caltech101 91.9 ±0.5 91.0 ±0.4 93.8 ±0.5 93.9 ±0.3

CIFAR100 57.4 ±1.0 58.0 ±0.9 73.8 ±0.9 73.1 ±0.7

Flowers102 83.9 ±0.3 84.4 ±0.3 91.1 ±0.3 90.0 ±0.5

Pets 89.5 ±0.4 89.6 ±0.3 89.9 ±0.7 89.6 ±0.6

Sun397 55.9 ±1.0 53.7 ±0.8 59.7 ±0.6 60.4 ±0.6

SVHN 28.3 ±1.1 47.3 ±1.4 77.2 ±0.8 64.5 ±1.3

DTD 61.1 ±0.0 63.8 ±0.0 68.4 ±0.2 64.4 ±0.2

EuroSAT 87.7 ±0.9 85.7 ±0.6 93.0 ±0.6 94.1 ±0.6

Resics45 73.5 ±0.9 75.5 ±1.0 83.4 ±0.6 87.6 ±0.7

Patch Camelyon 76.2 ±1.1 78.0 ±1.4 77.9 ±2.4 72.2 ±1.8

Retinopathy 32.9 ±2.2 31.6 ±1.2 35.2 ±1.2 31.3 ±2.9

CLEVR-count 30.1 ±1.0 28.7 ±1.1 46.6 ±1.1 45.2 ±1.1

CLEVR-dist 32.2 ±1.1 30.5 ±1.7 38.8 ±1.0 44.7 ±2.2

dSprites-loc 11.9 ±0.4 12.2 ±0.5 83.7 ±5.6 87.1 ±2.4

dSprites-ori 20.1 ±1.1 24.7 ±1.9 52.1 ±1.3 44.8 ±2.3

SmallNORB-azi 12.3 ±0.8 12.4 ±0.5 16.8 ±0.8 18.3 ±0.7

SmallNORB-elev 19.1 ±0.7 18.9 ±1.0 22.9 ±0.5 31.3 ±1.7

DMLab 30.6 ±0.3 32.6 ±0.8 34.6 ±0.6 32.7 ±1.6

KITTI-dist 61.4 ±2.3 62.6 ±2.0 66.8 ±3.0 66.9 ±2.2

FGVC-Aircraft 41.0 ±0.7 50.9 ±0.7 65.1 ±0.7 73.5 ±0.4

Cars 43.3 ±0.0 40.1 ±0.0 67.9 ±0.2 79.4 ±0.1

Letters 57.6 ±0.8 64.2 ±0.6 79.7 ±0.4 82.3 ±0.9

Average acc 49.9 51.7 64.5 64.9

Table 23. Accuracy comparison between different adap-
tation methods in offline mode using a pre-trained
EfficientNet-B0 backbone. We use an LDA head. The re-
ported results are based on 50 shots and averaged over 5
runs (mean±std).



Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9 10

NA 93.2 87.1 81.9 80.2 76.8 74.3 72.8 70.6 70.1 68.2
E-EWC+SDC 97.2 70.5 63.6 46.4 40.2 40.7 38.8 35.5 33.9 32.4
FACT 96.6 48.2 32.8 24.2 19.3 16.4 13.9 12.5 11.3 10.2
ALICE 96.6 80.2 73.7 69.4 64.8 61.7 58.1 55.7 54.3 52.4
FSA 96.0 86.3 80.5 77.7 74.2 70.9 68.2 65.8 64.2 62.8
FSA-LL 96.4 84.9 79.1 75.4 71.6 68.5 66.4 64.1 62.7 60.5
FSA-FiLM 96.4 90.4 86.8 84.7 82.0 79.8 78.2 76.1 75.7 73.8

GDumb-1k 94.17 86.2 81.0 76.1 70.8 64.3 62.0 59.7 57.1 54.5
GDumb-5k 97.0 91.6 88.1 85.1 81.8 77.9 75.6 73.2 71.8 69.3

Table 24. Detailed accuracy for each incremental session on CIFAR100 under the high-shot CIL setting. The best results
across all methods per session are in bold while the best results across the no-memory methods are underlined. A pre-trained
EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9

NA 96.3 94.5 91.6 89.9 87.7 84.8 82.0 82.8 82.6
E-EWC+SDC 98.7 89.7 72.6 65.4 43.0 40.8 35.1 26.6 21.7
FACT 98.5 66.9 50.5 40.4 33.8 28.9 25.3 23.9 22.0
ALICE 98.1 92.2 87.0 84.4 80.4 76.4 72.6 73.4 72.8
FSA 98.0 93.6 89.8 88.8 86.8 84.4 81.7 82.3 82.8
FSA-LL 97.8 92.1 87.3 85.6 83.6 81.4 78.5 78.6 79.0
FSA-FiLM 98.5 96.0 92.6 90.6 89.5 87.3 85.0 85.6 85.4

GDumb-1k 96.9 94.3 91.9 90.6 88.2 85.4 80.7 82.3 82.4
GDumb-5k 97.5 96.7 94.6 92.7 91.8 90.3 89.0 90.0 90.0

Table 25. Detailed accuracy for each incremental session on CORE50 under the high-shot CIL setting. The best results
across all methods per session are in bold while the best results across the no-memory methods are underlined. A pre-trained
EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5

NA 81.5 61.5 48.5 42.5 39.9
E-EWC+SDC 99.0 55.5 48.1 44.7 39.5
FACT 99.3 63.5 47.4 38.7 33.8
ALICE 99.3 73.5 56.4 49.9 46.1
FSA 97.2 86.4 78.2 73.0 71.3
FSA-LL 96.7 82.7 72.6 67.4 64.6
FSA-FiLM 99.1 89.0 81.7 77.6 75.9

GDumb-1k 97.4 91.7 87.3 83.8 78.3
GDumb-5k 98.6 97.3 95.8 93.7 93.2

Table 26. Detailed accuracy for each incremental session on SVHN under the high-shot CIL setting. The best results
across all methods per session are in bold while the best results across the no-memory methods are underlined. A pre-trained
EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.



Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7

NA 44.9 37.4 31.6 27.1 23.8 21.5 20.6
E-EWC+SDC 99.5 58.1 29.9 33.0 19.4 21.7 18.6
FACT 100.0 16.6 12.7 10.1 8.4 7.2 6.4
ALICE 100.0 92.6 77.6 69.6 65.6 69.8 68.3
FSA 100.0 95.4 92.3 87.7 89.9 90.7 91.5
FSA-LL 99.8 94.0 93.9 90.5 91.5 91.4 91.3
FSA-FiLM 99.6 89.6 84.6 78.7 77.5 77.0 76.9

GDumb-1k 91.2 85.5 85.6 83.8 76.3 78.1 79.5
GDumb-5k 99.4 99.5 99.6 98.5 99.4 98.4 99.4

Table 27. Detailed accuracy for each incremental session on dSprites-loc under the high-shot CIL setting. The best
results across all methods per session are in bold while the best results across the no-memory methods are underlined. A
pre-trained EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9 10

NA 42.0 38.0 29.9 37.0 43.9 41.3 40.7 42.4 41.2 41.2
E-EWC-SDC 58.0 35.3 27.3 27.7 27.4 28.2 23.5 25.4 25.7 25.6
FACT 58.7 30.6 24.9 21.4 19.1 19.0 17.6 16.9 15.5 14.7
ALICE 61.3 43.5 36.7 39.5 41.5 41.8 41.0 41.6 40.0 39.8
FSA 54.2 44.4 39.7 45.9 52.2 49.6 48.9 51.4 51.1 50.8
FSA-LL 58.0 40.5 37.0 41.6 44.3 44.9 44.9 46.1 45.1 45.4
FSA-FiLM 52.9 46.2 44.7 50.3 53.3 55.0 54.5 56.3 55.5 55.9

GDumb-1k 59.8 47.3 42.6 46.5 51.8 43.7 43.4 43.0 39.2 38.4
GDumb-5k 58.6 43.0 36.9 40.1 41.0 36.1 30.3 30.3 29.5 25.3

Table 28. Detailed accuracy for each incremental session on FGVC-Aircraft under the high-shot CIL setting. The best
results across all methods per session are in bold while the best results across the no-memory methods are underlined. A
pre-trained EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9 10

NA 72.7 49.9 49.9 46.4 47.1 47.2 44.5 44.7 44.6 43.3
E-EWC+SDC 80.2 47.3 38.7 37.2 34.8 33.5 31.0 31.6 31.2 30.0
FACT 79.8 2.9 1.9 1.4 1.1 0.9 0.8 0.7 0.6 0.6
ALICE 82.7 52.9 49.6 45.1 42.8 41.1 39.0 38.8 38.1 36.4
FSA 79.3 55.0 55.9 54.0 53.3 52.7 51.5 51.5 51.4 50.3
FSA-LL 81.2 49.3 50.5 49.9 49.0 46.9 46.8 46.9 46.6 45.7
FSA-FiLM 80.1 59.5 60.0 59.4 58.9 58.2 56.8 57.3 56.7 55.9

GDumb-1k 81.5 59.9 54.0 47.3 40.5 33.9 32.7 27.6 22.8 18.1
GDumb-5k 82.1 65.8 59.0 51.8 46.7 38.0 37.6 32.3 28.7 24.2

Table 29. Detailed accuracy for each incremental session on Cars under the high-shot CIL setting. The best results across
all methods per session are in bold while the best results across the no-memory methods are underlined. A pre-trained
EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.



Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9 10 11

NA 90.12 84.3 82.4 80.1 78.7 78.0 76.0 75.3 72.8 71.6 68.4
E-EWC+SDC 99.9 83.4 64.5 59.9 47.8 54.1 42.6 40.4 31.1 30.0 33.6
FACT 99.9 69.9 53.9 43.4 36.3 32.7 29.3 27.0 24.4 22.4 20.9
ALICE 99.9 96.1 93.4 89.5 88.7 87.9 85.8 83.7 81.1 79.3 75.7
FSA 99.8 96.4 94.6 91.3 90.3 89.6 87.9 86.3 83.4 82.0 78.4
FSA-LL 99.8 95.9 94.0 90.4 89.0 88.3 86.3 85.3 82.4 81.0 77.2
FSA-FiLM 99.6 96.0 94.4 92.0 91.1 90.6 88.5 87.7 85.0 83.4 79.7

GDumb-1k 96.0 92.2 89.4 86.7 85.7 83.9 81.1 80.3 76.2 75.2 70.1
GDumb-5k 99.4 98.3 97.2 95.2 94.6 94.3 92.2 91.3 88.5 86.9 82.6

Table 30. Detailed accuracy for each incremental session on Letters under the high-shot CIL setting. The best results
across all methods per session are in bold while the best results across the no-memory methods are underlined. A pre-trained
EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method Backbone
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9

Decoupled-Cos*

RN-20

74.6 67.4 63.6 59.6 56.1 53.8 51.7 49.7 47.7
CEC* 73.1 68.9 65.3 61.2 58.1 55.6 53.2 51.3 49.1
FACT* 74.6 72.1 67.6 63.5 61.4 58.4 56.3 54.2 52.1
FSA 75.1 71.2 67.5 63.3 60.0 57.6 55.5 54.2 52.0
NA

RN-18

68.9 65.4 62.4 58.7 57.2 54.7 53.3 51.9 50.4
FACT 75.8 71.0 66.3 62.5 59.1 56.3 54.1 51.8 49.5
ALICE† 79.0 70.5 67.1 63.4 61.2 59.2 58.1 56.3 54.1
FSA-FiLM 73.0 69.7 66.3 63.2 61.9 59.3 58.3 57.2 55.2
FSA 82.0 78.2 74.8 70.22 68.7 66.2 65.3 63.8 61.4
NA

EN-B0

74.4 70.4 67.4 63.4 62.4 59.8 58.4 56.9 55.2
FACT 86.4 80.6 75.6 71.1 67.6 64.4 61.8 59.2 56.5
ALICE 87.7 83.3 78.7 74.4 72.1 69.6 67.4 65.4 62.7
FSA-FiLM 79.6 75.6 72.9 68.8 68.2 65.4 64.9 63.9 61.8
FSA 87.6 83.5 79.7 75.4 73.8 70.9 70.2 68.8 66.1

Table 31. Detailed accuracy for each incremental session on CIFAR100 under the few-shot+ CIL setting. Asterisk (*)
indicates that the reported results of a method are from [31] and † that the reported results of a method are from [22]. We
use three different backbones, EfficientNet-B0 (EN-B0) and ResNet-18/20 (RN-18/20); EN-B0 and RN-18 are pre-trained
on Imagenet-1k.



Method Backbone
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9 10 11

NA

RN-18

70.7 66.7 63.4 59.0 58.2 56.4 54.0 52.3 50.5 50.5 50.0
Decoupled-Cos* 75.5 71.0 66.5 61.2 60.9 56.9 55.4 53.5 51.9 50.9 49.3
CEC* 75.9 71.9 68.5 63.5 62.4 58.3 57.7 55.8 54.8 53.5 52.3
FACT* 75.9 73.2 70.8 66.1 65.6 62.2 61.7 59.8 58.4 57.9 56.9
ALICE† 77.4 72.7 70.6 67.2 65.9 63.4 62.9 61.9 60.5 60.6 60.1
FSA-FiLM 72.7 68.2 64.9 60.8 60.2 58.1 55.4 54.8 53.5 53.4 52.7
FSA 76.1 72.6 69.6 65.0 64.6 62.3 61.6 59.6 58.2 58.2 57.6
NA

EN-B0

78.6 75.8 73.4 69.5 69.2 67.3 66.5 64.3 62.7 63.1 63.2
FACT 82.0 77.5 74.4 70.0 69.3 66.6 66.2 64.7 64.0 63.3 62.9
ALICE 81.6 77.1 75.1 71.9 70.5 67.8 66.8 65.7 64.1 64.0 63.5
FSA-FiLM 79.0 75.3 72.7 69.5 68.3 66.5 65.3 64.1 62.8 62.9 62.9
FSA 80.2 77.1 74.2 69.3 69.3 66.9 66.4 64.8 63.6 63.8 63.4

Table 32. Detailed accuracy for each incremental session on CUB200 under the few-shot+ CIL setting. Asterisk (*)
indicates that the reported results of a method are from [31] and † that the reported results of a method are from [22].
We use two different backbones, EfficientNet-B0 (EN-B0) and ResNet-18 (RN-18); EN-B0 and RN-18 are pre-trained on
Imagenet-1k.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9

NA 80.2 ± 0.9 76.2 ± 0.7 72.4 ± 1.5 68.7 ± 1.5 65.2 ± 1.4 63.5 ± 1.3 60.8 ± 1.3 59.5 ± 1.9 57.4 ± 1.0
GDumb 83.9 ± 1.4 80.1 ± 0.5 77.6 ± 1.6 71.7 ± 2.2 67.5 ± 1.8 64.0 ± 1.5 59.4 ± 1.2 58.6 ± 1.9 55.7 ± 1.0
FACT 83.0 ± 1.2 54.5 ± 1.4 40.7 ± 1.0 32.6 ± 1.0 27.6 ± 0.9 23.8 ± 0.7 20.8 ± 0.5 18.7 ± 0.4 16.8 ± 0.3
FSA 82.7 ± 2.1 75.4 ± 1.7 72.5 ± 1.8 69.5 ± 1.6 66.8 ± 1.8 64.5 ± 1.4 63.1 ± 1.5 62.7 ± 1.5 60.3 ± 1.3
FSA-FiLM 89.2 ± 0.9 85.8 ± 1.3 84.3 ± 1.3 81.0 ± 1.3 77.9 ± 1.7 75.9 ± 1.0 74.3 ± 1.4 74.2 ± 1.1 70.9 ± 1.0

Table 33. Detailed accuracy for each incremental session on CIFAR100 under the few-shot CIL setting. GDumb is the
only memory-based method used for comparisons; we use a buffer size equal to the first session’s number of images N1.
The best results across all methods are in bold while the best results across the no-memory methods are underlined. A
pre-trained EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5

NA 73.5 ± 4.6 53.3 ± 3.7 37.3 ± 1.8 33.6 ± 1.5 28.3 ± 1.1

GDumb 78.2 ± 4.9 46.7 ± 5.1 35.2 ± 1.6 23.3 ± 3.8 21.0 ± 2.1

FACT 71.3 ± 1.0 46.6 ± 3.5 34.0 ± 1.9 27.7 ± 2.5 24.1 ± 2.0

FSA 70.7 ± 2.9 50.8 ± 3.9 38.4 ± 3.2 35.7 ± 1.6 32.9 ± 1.0

FSA-FiLM 90.7 ± 1.8 70.4 ± 1.4 60.5 ± 1.5 55.5 ± 2.3 51.3 ± 2.1

Table 34. Detailed accuracy for each incremental session on SVHN under the few-shot CIL setting. GDumb is the only
memory-based method used for comparisons; we use a buffer size equal to the first session’s number of images N1. The best
results across all methods are in bold while the best results across the no-memory methods are underlined. A pre-trained
EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.



Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7

NA 35.7 ± 1.4 26.4 ± 1.7 22.1 ± 1.7 18.1 ± 1.2 15.4 ± 0.8 13.5 ± 0.7 11.9 ± 0.4

GDumb 36.4 ± 7.9 29.9 ± 6.3 20.3 ± 3.6 22.1 ± 5.5 13.1 ± 2.1 11.7 ± 3.2 16.4 ± 2.6

FACT 32.6 ± 1.4 22.7 ± 2.2 18.4 ± 2.1 14.4 ± 1.9 12.4 ± 1.5 11.9 ± 1.6 11.7 ± 1.7

FSA 57.4 ± 2.3 44.8 ± 2.8 39.3 ± 1.6 34.8 ± 2.1 32.9 ± 1.9 33.2 ± 2.6 33.7 ± 1.7

FSA-FiLM 62.7 ± 2.1 50.2 ± 2.4 46.9 ± 2.3 40.1 ± 2.2 37.3 ± 2.5 36.1 ± 2.2 35.7 ± 2.1

Table 35. Detailed accuracy for each incremental session on dSprites-position under the few-shot CIL setting. GDumb
is the only memory-based method used for comparisons; we use a buffer size equal to the first session’s number of images
N1. The best results across all methods are in bold while the best results across the no-memory methods are underlined. A
pre-trained EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9

NA 35.5 ± 0.9 28.7 ± 0.7 36.4 ± 0.8 42.8 ± 0.4 40.0 ± 0.4 39.4 ± 0.6 41.4 ± 0.7 40.3 ± 0.9 41.0 ± 0.7

GDumb 51.1 ± 1.7 45.4 ± 1.2 46.9 ± 1.8 52.2 ± 1.0 45.4 ± 1.7 42.5 ± 1.6 41.8 ± 0.9 39.5 ± 1.9 38.6 ± 1.0

FACT 41.4 ± 0.6 25.9 ± 0.9 19.6 ± 0.4 16.3 ± 0.4 13.7 ± 0.4 11.3 ± 0.5 10.4 ± 0.5 9.4 ± 0.6 8.3 ± 0.6

FSA 42.9 ± 2.6 39.5 ± 2.0 45.5 ± 1.5 51.6 ± 1.7 48.2 ± 1.8 47.3 ± 1.4 49.8 ± 1.5 49.1 ± 1.7 50.1 ± 1.5

FSA-FiLM 46.6 ± 1.9 44.8 ± 1.1 49.4 ± 0.8 52.9 ± 1.6 54.0 ± 0.7 53.5 ± 1.0 55.8 ± 0.7 55.2 ± 0.5 55.8 ± 0.6

Table 36. Detailed accuracy for each incremental session on FGVC-Aircraft under the few-shot CIL setting. GDumb
is the only memory-based method used for comparisons; we use a buffer size equal to the first session’s number of images
N1. The best results across all methods are in bold while the best results across the no-memory methods are underlined. A
pre-trained EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9 10 11

NA 82.1 ± 0.8 76.6 ± 0.9 73.0 ± 1.5 69.6 ± 1.0 69.0 ± 1.3 67.6 ± 1.3 65.8 ± 1.2 64.1 ± 1.0 60.4 ± 0.6 59.0 ± 0.8 57.6 ± 0.8

GDumb 91.3 ± 1.6 91.8 ± 1.2 80.0 ± 1.4 72.0 ± 1.9 69.2 ± 3.0 63.5 ± 1.5 59.9 ± 1.1 54.5 ± 0.3 48.0 ± 0.4 44.3 ± 1.9 41.2 ± 1.7

FACT 84.3 ± 1.4 72.0 ± 1.2 68.0 ± 2.2 63.2 ± 1.0 62.3 ± 1.0 59.5 ± 1.2 58.0 ± 1.0 55.8 ± 1.0 52.8 ± 0.7 51.7 ± 0.8 49.8 ± 0.8

FSA 87.0 ± 1.4 79.6 ± 1.1 76.4 ± 0.9 72.7 ± 0.7 73.0 ± 0.9 71.3 ± 0.4 69.7 ± 0.4 68.4 ± 0.4 64.7 ± 0.5 62.9 ± 0.4 62.2 ± 0.4

FSA-FiLM 94.3 ± 0.9 90.6 ± 0.3 88.6 ± 1.0 85.1 ± 0.6 84.9 ± 0.4 84.0 ± 0.4 82.5 ± 0.7 81.1 ± 0.4 76.8 ± 0.4 75.0 ± 0.4 73.4 ± 0.4

Table 37. Detailed accuracy for each incremental session on Letters under the few-shot CIL setting. GDumb is the only
memory-based method used for comparisons; we use a buffer size equal to the first session’s number of images N1. The best
results across all methods are in bold while the best results across the no-memory methods are underlined. A pre-trained
EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.

Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9

NA 83.3 ± 1.0 62.6 ± 0.5 60.9 ± 1.0 61.5 ± 0.3 68.3 ± 1.2 71.1 ± 0.6 72.0 ± 0.7 70.8 ± 1.0 69.0 ± 0.3

GDumb 88.3 ± 0.4 63.6 ± 0.8 58.6 ± 0.6 56.4 ± 1.0 66.0 ± 1.1 68.7 ± 0.4 68.9 ± 0.6 65.8 ± 1.0 63.2 ± 1.1

FACT 84.3 ± 0.6 53.6 ± 0.6 43.0 ± 0.5 35.9 ± 0.6 28.3 ± 0.6 24.2 ± 0.3 22.6 ± 0.3 22.0 ± 0.5 20.6 ± 0.2

FSA 85.2 ± 0.3 63.3 ± 0.3 61.4 ± 0.7 61.6 ± 0.5 68.5 ± 0.9 71.2 ± 1.1 72.2 ± 0.5 71.2 ± 0.7 70.3 ± 0.4

FSA-FiLM 87.7 ± 0.3 68.5 ± 0.6 66.9 ± 0.4 66.7 ± 0.9 73.7 ± 0.6 76.0 ± 0.7 76.0 ± 0.5 75.0 ± 0.6 74.0 ± 0.3

Table 38. Detailed accuracy for each incremental session on DomainNet under the few-shot CIL setting. GDumb is the
only memory-based method used for comparisons; we use a buffer size equal to the first session’s number of images N1.
The best results across all methods are in bold while the best results across the no-memory methods are underlined. A
pre-trained EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.



Method
Accuracy (%) in each session (↑)

1 2 3 4 5 6 7 8 9

NA 51.9 52.8 44.9 46.8 49.3 51.7 54.4 53.8 49.7
GDumb 56.4 50.1 36.3 47.5 44.2 44.7 46.4 40.9 40.4
FACT 54.9 29.9 24.6 23.8 20.4 17.8 15.7 16.4 14.3
FSA 52.1 53.6 40.0 47.8 49.2 51.3 55.1 55.1 51.5
FSA-FiLM 61.8 61.6 52.0 56.5 57.0 59.4 61.8 61.2 58.8

Table 39. Detailed accuracy for each incremental session on iNaturalist under the few-shot CIL setting. GDumb is the
only memory-based method used for comparisons; we use a buffer size equal to the first session’s number of images N1.
The best results across all methods are in bold while the best results across the no-memory methods are underlined. A
pre-trained EfficientNet-B0 on Imagenet-1k is used as a backbone for all methods.
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