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A. DSEC-Flow: Sequence selection
The contrast maximization framework for motion com-

pensation assumes constant illumination [6, 7]. Under this
assumption, all the events captured with an event camera
are generated by the apparent motion of objects in the image
space. However, the constant illumination assumption is of-
ten violated in sequences recorded at night because the main
source of light in these environments comes from flashing,
artificial lights (e.g., street lamps). In addition, the signal-
to-noise ratio of these sensors decreases under low light
conditions, which means that a large percentage of the cap-
tured events are not triggered by motion but by sensor noise
[5]. For these reasons, we remove any sequence recorded at
night from the original DSEC-Flow training dataset [8, 9].
Specifically, we use all the sequences in the training dataset,
from beginning to end, except for variants of those listed in
Table S1.

zurich city 00 * zurich city 01 *
zurich city 09 * zurich city 10 *

Table S1: Sequences from the DSEC-Flow training dataset [8, 9]
that were not used for the training of our models.

B. Additional results
B.1. Breakdown of DSEC-Flow results

A breakdown of the quantitative results on DSEC-Flow
can be found in Table S3. Additionally, Fig. S1 shows the
IWEs that correspond to the input events and pixel displace-
ment predictions in Fig. 7 and discussed in Section 4.2.

B.2. Breakdown of MVSEC results

Fig. S3 shows a qualitative comparison of our self-
supervised learning (SSL) method with state-of-the-art
techniques on the outdoor day1 sequence from MVSEC.
As described in Section 4.2, for this evaluation we used all

EPE↓ %3PE↓
dt = 0.1s∗ 3.48 34.72
dt = 0.05s∗ 3.24 32.45
dt = 0.01s∗ 15.85 90.52
dt = 0.005s∗ 28.45 97.27
dt = 0.002s∗ 15.28 94.79
dt = 0.05s 3.09 27.36
dt = 0.01s 2.33 17.77
dt = 0.005s 2.34 17.92
dt = 0.002s 2.66 21.83

Table S2: Quantitative evaluation of the impact of sequential pro-
cessing on DSEC-Flow [9]. Best in bold, runner up underlined. ∗:
Non-recurrent, volumetric event representation with 10 bins.

the events in between samples of the temporally-upsampled
ground-truth data (provided at 45 Hz) as input for every for-
ward pass. These results support the conclusions derived
from Table 3.

For completeness, a breakdown of the quantitative re-
sults on all MVSEC evaluation sequences can be found in
Table S4. This includes not just the outdoor day1 scenario
(as discussed in the main text), but also the three indoor se-
quences. These indoor sequences present notably different
statistics compared to the automotive dataset used for train-
ing our models [9], as they were recorded with a drone op-
erating in an indoor environment. On these sequences, our
transferred model demonstrates (on average) an improve-
ment of ↓ 25% in endpoint error (EPE, lower is better, ↓)
compared to the architecturally-equivalent ConvGRU-EV-
FlowNet model from Hagenaars et al. [10], while showing
an error increase of ↑ 30% compared to Shiba et al. [15].
However, note that the latter method is not learning-based,
so it is not subject to generalization issues besides those in-
herent to contrast maximization (see main text). Lastly, it’s
worth noting that the benchmarking of event-based optical
flow solutions is shifting from MVSEC [18] to the DSEC
dataset [9] due to calibration issues [9] and the lack of a
standardized training dataset in the former [3,9–12,15–17].



All interlaken 00 b interlaken 01 a thun 01 a
EPE↓ %3PE↓ FWL↑ RSAT↓ EPE↓ %3PE↓ FWL↑ RSAT↓ EPE↓ %3PE↓ FWL↑ RSAT↓ EPE↓ %3PE↓ FWL↑ RSAT↓

SL

E-RAFT [9] 0.79 2.68 1.33 0.87 1.39 6.19 1.42 0.91 0.90 3.91 1.56 0.85 0.65 1.87 1.30 0.88
EV-FlowNet, Gehrig et al. [9] 2.32 18.60 - - - - - - - - - - - - - -
IDNet [17] 0.72 2.04 - - 1.25 4.35 - - 0.77 2.60 - - 0.57 1.47 - -
TIDNet [17] 0.84 2.80 - - 1.43 6.30 - - 0.93 3.50 - - 0.73 2.60 - -
TMA [12] 0.74 2.30 - - 1.39 5.79 - - 0.81 3.11 - - 0.62 1.61 - -
Cuadrado et al. [3] 1.71 10.31 - - 3.07 23.51 - - 1.90 14.93 - - 1.36 5.93 - -
E-Flowformer [11] 0.76 2.45 - - 1.38 6.05 - - 0.86 3.31 - - 0.60 1.60 - -

SS
L

E

EV-FlowNet∗ [20] 3.86 31.45 1.30 0.85 6.32 47.95 1.46 0.85 4.91 36.07 1.42 0.81 2.33 20.92 1.32 0.85
ConvGRU-EV-FlowNet∗ [10] 4.27 33.27 1.55 0.90 6.78 46.77 1.74 0.92 5.21 32.26 1.92 0.88 2.15 17.50 1.49 0.91
dt = 0.01s, R = 2, S = 1 (Ours) 9.66 86.44 1.91 1.07 9.86 87.24 1.89 1.08 9.33 86.70 2.07 1.01 8.71 86.45 1.81 1.11
dt = 0.01s, R = 5, S = 1 (Ours) 4.05 52.22 1.58 0.97 5.18 61.14 1.62 0.98 3.86 53.19 1.91 0.91 3.34 44.37 1.46 0.99
dt = 0.01s, R = 10, S = 1 (Ours) 2.33 17.77 1.26 0.88 3.34 25.72 1.33 0.90 2.49 19.15 1.40 0.83 1.73 10.39 1.21 0.89
dt = 0.01s, R = 20, S = 1 (Ours) 16.63 33.67 1.06 1.10 30.98 46.26 0.86 1.18 7.43 33.94 1.17 0.98 14.41 21.36 0.74 1.20
dt = 0.01s, R = 10, S = 3 (Ours) 2.82 27.09 1.37 0.92 3.79 37.48 1.44 0.94 2.83 28.14 1.66 0.86 2.13 18.40 1.29 0.93
dt = 0.01s, R = 20, S = 4 (Ours) 2.73 23.73 1.24 0.90 3.31 29.97 1.34 0.91 2.73 25.92 1.45 0.86 1.81 13.19 1.21 0.92

M
B Shiba et al. [15] 3.47 30.86 1.37 0.89 5.74 38.93 1.46 0.90 3.74 31.37 1.63 0.88 2.12 17.68 1.32 0.89

thun 01 b zurich city 12 a zurich city 14 c zurich city 15 a
EPE↓ %3PE↓ FWL↑ RSAT↓ EPE↓ %3PE↓ FWL↑ RSAT↓ EPE↓ %3PE↓ FWL↑ RSAT↓ EPE↓ %3PE↓ FWL↑ RSAT↓

SL

E-RAFT [9] 0.58 1.52 1.25 0.89 0.61 1.06 0.91 0.93 0.71 1.91 1.47 0.83 0.59 1.30 1.40 0.84
EV-FlowNet, Gehrig et al. [9] - - - - - - - - - - - - - - - -
IDNet [17] 0.55 1.35 - - 0.60 1.16 - - 0.76 2.74 - - 0.55 1.02 - -
TIDNet [17] 0.65 1.70 - - 0.67 1.30 - - 0.80 4.60 - - 0.65 1.30 - -
TMA [12] 0.55 1.31 - - 0.57 0.87 - - 0.66 1.99 - - 0.55 1.08 - -
Cuadrado et al. [3] 1.41 6.38 - - 1.24 3.85 - - 1.58 9.96 - - 1.24 4.89 - -
E-Flowformer [11] 0.57 1.50 - - 0.58 0.91 - - 0.67 2.09 - - 0.56 1.15 - -

SS
L

E

EV-FlowNet∗ [20] 3.04 25.41 1.33 0.87 2.62 25.80 1.03 0.94 3.36 36.34 1.24 0.82 2.97 25.53 1.33 0.82
ConvGRU-EV-FlowNet∗ [10] 3.25 25.31 1.51 0.92 3.67 40.15 0.97 0.93 3.47 40.98 1.60 0.87 3.21 27.99 1.61 0.89
dt = 0.01s, R = 2, S = 1 (Ours) 9.38 86.68 1.66 1.08 11.54 85.35 1.40 1.10 10.18 86.39 2.50 1.03 8.54 86.30 2.01 1.06
dt = 0.01s, R = 5, S = 1 (Ours) 3.51 47.33 1.66 1.00 4.76 51.82 1.14 0.99 4.23 57.26 1.72 0.93 3.42 50.40 1.54 0.96
dt = 0.01s, R = 10, S = 1 (Ours) 1.66 9.34 1.25 0.91 2.72 26.65 1.04 0.94 2.64 23.01 1.38 0.85 1.69 9.98 1.23 0.86
dt = 0.01s, R = 20, S = 1 (Ours) 9.09 22.53 1.09 1.08 27.19 44.78 1.49 1.17 20.06 41.65 1.16 1.05 15.97 25.16 0.90 1.05
dt = 0.01s, R = 10, S = 3 (Ours) 2.03 17.19 1.40 0.94 3.53 33.77 1.08 0.97 2.95 32.75 1.43 0.88 2.26 21.95 1.29 0.89
dt = 0.01s, R = 20, S = 4 (Ours) 1.85 13.71 1.21 0.93 4.19 35.65 0.91 0.95 2.53 27.97 1.32 0.85 1.93 15.50 1.24 0.87

M
B Shiba et al. [15] 2.48 23.56 1.28 0.89 3.86 43.96 1.08 0.95 2.72 30.53 1.44 0.85 2.35 20.99 1.39 0.87

∗Retrained by us on DSEC-Flow, linear warping.

Table S3: Breakdown of the quantitative evaluation on the DSEC-Flow dataset [9]. Best in bold, runner up underlined. The results of our
best performing model are highlighted in red. SL: supervised learning; SSLF: SSL trained with grayscale images; SSLE; SSL trained with
events; MB: model-based methods.

B.3. Impact of sequential processing

Here, we study the impact of the proposed contrast maxi-
mization framework for sequential event-based optical flow
estimation (i.e., short input partitions, longer training parti-
tions; see Section 3) and compare it to the non-sequential
pipeline from Zhu et al. [20] (i.e., input and training parti-
tions are of the same length). To do this, we trained mul-
tiple models on DSEC-Flow with different dtinput, but with
dttrain= 0.1s for the sequential models and dttrain= dtinput
for the non-sequential. Quantitative results in Table S2 con-
firm the claims made in Section 3.1 about the fact that,
for contrast maximization to be a robust supervisory sig-
nal, the training event partition used for the computation
of the supervisory signal needs to contain enough motion
information (i.e., blur) so it can be compensated for. As
shown, non-sequential models converge to worse solutions
the shorter the input window. On the other hand, our se-
quential pipeline allows us to shorten the input window
without compromising the performance, as discussed in
Section 4.2.

B.4. Linear vs. iterative event warping

Here, we examine the effect of the type of event warping
(linear [10] vs. iterative) on the performance of the sequen-
tial, stateful architecture introduced in Section 3.4 when it
is trained on the DSEC-Flow dataset. To do this, we trained
four models in total: two variants (with and without image
border compensation, see Section B.5) of ConvGRU-EV-
FlowNet [10], which is trained with linear warping; and an-
other two variants of the same architecture, but trained with
the proposed iterative warping module. Quantitative and
qualitative results are presented in Table S5 and Fig. S4, re-
spectively. In both cases (with and without image-border
compensation), the models trained with iterative warping
(i.e., ours) outperform those trained with linear warping
(EPE dropped by 28% without compensation, and 62% with
it), despite using the same architecture. This is expected, as
the iterative warping module is able to better capture the
trajectory of scene points over time, as explained in Section
3.2. The impact of the image-border compensation mecha-
nism is presented and discussed in Section B.5.

To support the arguments presented in Section 3.2 and
Fig. 2 regarding the limitations of linear warping, we also
conducted an experiment in which we deployed models



Figure S1: IWEs corresponding to the qualitative comparison of our method with the state-of-the-art E-RAFT architecture [9] and the
model-based approach from Shiba et al. [15] on sequences from the test partition of the DSEC-Flow dataset [9] (see Fig. 7).

outdoor day1 indoor flying1 indoor flying2 indoor flying3
EPE↓ %3PE↓ EPE↓ %3PE↓ EPE↓ %3PE↓ EPE↓ %3PE↓

SL

EV-FlowNet+ [16] 0.68 0.99 0.56 1.00 0.66 1.00 0.59 1.00
E-RAFT [9] 0.24 1.70 - - - - - -
EV-FlowNet [9] 0.31 0.00 - - - - - -
TMA [12] 0.25 0.07 1.06 3.63 1.81 27.29 1.58 23.26
Cuadrado et al. [3] 0.85 - 0.58 - 0.72 - 0.67 -

SS
L

F EV-FlowNet [19] 0.49 0.20 1.03 2.20 1.72 15.1 1.53 11.9
Ziluo et al. [4] 0.42 0.00 0.57 0.10 0.79 1.60 0.72 1.30

SS
L

E

EV-FlowNet [20] 0.32 0.00 0.58 0.00 1.02 4.00 0.87 3.00
EV-FlowNet [14] 0.92 5.40 0.79 1.20 1.40 10.9 1.18 7.40
EV-FlowNet [15] 0.36 0.09 - - - - - -
ConvGRU-EV-FlowNet [10] 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64
Ours dt = 0.005 0.27 0.05 0.44 0.00 0.88 4.51 0.70 2.41

M
B

Akolkar et al. [1] 2.75 - 1.52 - 1.59 - 1.89 -
Brebion et al. [2] 0.53 0.20 0.52 0.10 0.98 5.50 0.71 2.10
Shiba et al. [15] 0.30 0.11 0.42 0.09 0.60 0.59 0.50 0.29

Table S4: Quantitative evaluation on all MVSEC sequences [18]. Best in bold, runner up underlined. SL: supervised learning; SSLF: SSL
trained with grayscale images; SSLE; SSL trained with events; MB: model-based methods.

trained on DSEC-Flow with linear and iterative warping on
a sequence from the Event Camera Dataset [13] with strong
nonlinearities in the trajectories of scene points. Note that
this sequence, known as shapes 6dof, was recorded with a
different event camera and that its statistics are significantly
different from those of DSEC-Flow (i.e., hand-held camera

looking at a planar scene [13] vs. automotive scenario [8]).
Qualitative results are presented in Fig. S2. In addition to
showing that the models generalize (to some extent) to this
new sequence, these results demonstrate that only the mod-
els trained with iterative event warping are able to produce
sharp IWEs at multiple reference times.
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(a) Ours.

Accumulated events Reconstructed displacement

IWE at tref = 0 IWE at tref = latest

(b) ConvGRU-EV-FlowNet∗† [10].

Figure S2: Qualitative results of the ablation study with respect to
the type of event warping. Inference settings: dt = 0.01s, accumu-
lation window of 0.5s. Both models were trained on the DSEC-
Flow dataset [9], with dt = 0.01s, R = 10, S = 1. ∗: Retrained
by us on DSEC-Flow [9]. †: Without border compensation. The
optical flow color coding can be found in Fig. 2 (top).

B.5. Optical flow at the image borders

As discussed in Section 3.2, for a given temporal scale,
we mask the events that are transported outside the image
space at any time during the warping process from the com-
putation of the loss to prevent learning incorrect optical flow
at the image borders. Here we study the impact of this
masking mechanism on the performance of not only the pro-
posed SSL framework but also of two other literature meth-
ods: EV-FlowNet [20] and ConvGRU-EV-FlowNet [10].
For this experiment, we trained two versions of each model,
one with and one without the proposed image-border com-

EPE↓ %3PE↓
EV-FlowNet∗† [20] 3.86 31.45
EV-FlowNet∗ [20] 3.48 34.72
ConvGRU-EV-FlowNet∗† [10] 4.27 33.27
ConvGRU-EV-FlowNet∗ [10] 6.09 36.36
dt = 0.01s, R = 10, S = 1† (Ours) 3.08 21.38
dt = 0.01s, R = 10, S = 1 (Ours) 2.33 17.77
∗Retrained by us on DSEC-Flow, linear warping.
†Without border compensation.

Table S5: Quantitative results of the ablation study on the DSEC-
Flow dataset [9] with respect to the effectiveness of the proposed
warping module and image-border compensation mechanism.

pensation technique, on the DSEC-Flow dataset. Note that
EV-FlowNet is a stateless model trained with a volumetric
event representation with 10 bins, and hence processes all
the input events in between ground-truth samples at once.

Quantitative and qualitative results are presented in Ta-
ble S5 and Fig. S4, respectively. These results highlight
that, for both EV-FlowNet and our model, adding the pro-
posed image-border compensation improves performance
(EPE dropped by 10% and 24%, respectively). However,
the performance degraded when adding it to the training
pipeline of ConvGRU-EV-FlowNet (EPE went up by 43%).
We believe that the reason for this drop in performance is
the event warping method used during training. While the
proposed iterative warping allows for the error to propagate
through all the pixels covered in the warping process, the
linear warping used to train ConvGRU-EV-FlowNet only
propagates the error through pixels with input events [10].
Therefore, if events are removed from the computation of
the loss, the error is not propagated through the correspond-
ing pixels, and then the spatial coherence of the resulting
optical flow maps degrades. Despite sharing the same warp-
ing methodology, this is less of an issue for EV-FlowNet
since it processes the events from longer temporal windows
in a single forward pass, producing a single optical flow
map per loss. The longer this window, the more likely it
is that a pixel contains events triggered by multiple moving
objects (i.e., reflected as events with different timestamps),
and hence the higher the probability that the error is propa-
gated through that pixel.

B.6. Visualizing the endpoint error

To support the hypothesis in Section 3.3 that the length
of the training partition R has a significant impact on the
quality of the training, here we study the distribution of the
EPE of our models in Table 1 as a function of the ground
truth optical flow magnitude in the thun 00 a1 sequence

1Note that, since ground truth is required for this experiment, this se-
quence belongs to the training partition of DSEC-Flow [9]. Consequently,
this means that our models have had access to a randomly cropped version
of it during training.
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Figure S3: Qualitative comparison of our method with the state-of-the-art E-RAFT architecture [9] and the model-based approach from
Shiba et al. [15] on the outdoor day1 sequence from the MVSEC dataset [18]. Optical flow predictions are masked with the input events
to be consistent with the evaluation proposed in [19]. The optical flow color coding can be found in Fig. 2 (top).
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Figure S4: Qualitative results of the ablation study on the DSEC-Flow dataset [9] with respect to the effectiveness of the proposed event
warping module and image-border compensation mechanism. Top: Models trained with the proposed SSL framework (dt = 0.01s, R = 10,
S = 1). Bottom: Literature methods EV-FlowNet [20] and ConvGRU-EV-FlowNet [10]. ∗: Retrained by us on DSEC-Flow. †: Without
border compensation. The optical flow color coding can be found in Fig. 2 (top).
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Figure S5: Distribution of the EPE of our models in Table 1 as a function of the ground truth magnitude in the thun 00 a sequence from
DSEC-Flow [9]. For this experiment, and as in Table 1, all models were trained and deployed with dtinput = 0.01s.

from DSEC-Flow [9]. The error distributions are shown
in Fig. S5 and confirm the conclusions derived from Table
1 in Section 4.2. Models trained with short training parti-
tions (i.e., R ∈ [2, 5]) converge to solutions that are less
accurate (i.e., high EPE) for low ground truth magnitudes,
while long partitions (i.e., R ≥ 20) do the same but for high
ground truth magnitudes. The proposed multi-timescale ap-
proach (i.e., S > 1) to contrast maximization alleviates this
issue and allows for the training of models that are accurate
for all ground truth magnitudes without having to fine-tune
the length of the training partition. As shown in this figure,
the error distribution of the S > 1 models closely resembles
that of our best performing solution: R = 10, S = 1.
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[3] Javier Cuadrado, Ulysse Rançon, Benoit R. Cottereau, Fran-
cisco Barranco, and Timothée Masquelier. Optical flow es-
timation from event-based cameras and spiking neural net-

works. Frontiers in Neuroscience, 17:1160034, 2023. 1, 2,
3

[4] Ziluo Ding, Rui Zhao, Jiyuan Zhang, Tianxiao Gao, Ruiqin
Xiong, Zhaofei Yu, and Tiejun Huang. Spatio-temporal re-
current networks for event-based optical flow estimation. In
Proc. AAAI Conf. on Artificial Intell., volume 36, pages 525–
533, 2022. 3

[5] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew Davison, Jörg Conradt, Kostas Daniilidis, et al.
Event-based vision: A survey. IEEE Trans. Pattern Anal.
and Mach. Intell., 2020. 1

[6] Guillermo Gallego, Mathias Gehrig, and Davide Scara-
muzza. Focus is all you need: Loss functions for event-
based vis. In IEEE Conf. Comput. Vis. Pattern Recog., pages
12280–12289, 2019. 1

[7] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza.
A unifying contrast maximization framework for event cam-
eras, with applications to motion, depth, and optical flow es-
timation. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3867–3876, 2018. 1

[8] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide
Scaramuzza. DSEC: A stereo event camera dataset for driv-
ing scenarios. IEEE Robot. and Autom. Lett., 6(3):4947–
4954, 2021. 1, 3

[9] Mathias Gehrig, Mario Millhäusler, Daniel Gehrig, and Da-
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