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In this supplementary material, we first present detailed
derivations of gradients for previous regularization-based
calibration methods (Sec. S1). We then describe more de-
tails for calibration metrics and hyperparameters (Sec. S2).
We also provide more results on our approach (Sec.S3).

S1. Gradient analysis
S1.1. FLSD

MbLS [14] has shown that a focal loss (FL) [13] can be
regarded as a form of label smoothing (LS) [21]. Taking one
step further, we observe that FLSD [18] can also be approx-
imated as LS. Specifically, FLSD uses a sample-dependent
focusing parameter γ to improve calibration of FL. γ is de-
termined by a heuristic rule as follows:

γ =

{
5, pŷ ∈ [0, 0.2)

3, pŷ ∈ [0.2, 1)
. (1)

We empirically find that γ = 3 for 95% of samples on
Tiny-ImageNet [12]. This suggests that we can approxi-
mate FLSD [18] as FL and thus it can be viewed in the
form of LS. Based on the approximation in [14] and our ob-
servation, we formulate smoothing and indicator functions
of FLSD as in Table 2 in the main paper.

S1.2. CPC

Gradients. CPC [1] calibrates C(C − 1)/2 binary pairs
of probabilities instead of regularizing original C-way soft-
max probabilities. The loss function of CPC is as follows:

L = LCE + LCPC = LCE + λ1L1v1 + λ2LBE (2)

where λ1 and λ2 are hyperparameters. L1v1 and LBE are
defined as follows:

L1v1 = −
C∑

k ̸=y

log
py

py + pk
, (3)
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and

LBE = −
C∑

k,l ̸=y

(
log

pk
pk + pl

+ log
pl

pk + pl

)
. (4)

We compute the gradients of L1v1 and LBE w.r.t zj as fol-
lows:

∂L1v1

∂zj
=

∂

∂zj

−
C∑

k ̸=y

log
py

py + pk


= −

∑
k ̸=y

py + pk
py

∂py

∂zj
(py + pk)− py

(
∂py

∂zj
+ ∂pk

∂zj

)
(py + pk)2

=

{
−
∑

k ̸=y
pk

pj+pk
, j = y

pj

py+pj
, j ̸= y

,

(5)

and

∂LBE

∂zj
=

∂

∂zj

−
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pk
pk + pl

+ log
pl

pk + pl
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pl + pk
pk

∂pk
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(
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pj−pk
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, j ̸= y

.

(6)
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We compute the gradients of CPC w.r.t zj using Eqs. (5)
and (6) as follows:

∂L
∂zj

=
∂LCE

∂zj
+

∂LCPC

∂zj
=

∂LCE

∂zj
+ λ1

∂L1v1

∂zj
+ λ2

∂LBE

∂zj

=

pj −
(
qj + λ1

∑
k ̸=j

pk

pj+pk

)
j = y

pj −
(
qj + λ1

pj

py+pj
+ λ2

∑
k ̸=y

pk−pj

pk+pj

)
j ̸= y

.

(7)

where λ1 and λ2 are hyperparameters. We omit the con-
stant (e.g., 2) for brevity.

Smoothing and indicator functions. Reformulating
Eq. (7), we define a smoothing function of CPC as follows:

f(zj) =

{
−λ1

∑C
k ̸=j

pk

pk+pj
, j = y

λ1
pj

py+pj
+ λ2

∑
k ̸=y

pj−pk

pj+pk
, j ̸= y

. (8)

Eq. (8) shows that CPC adjusts the labels and the only dif-
ference between CPC and LS [21] is how they determine the
degree of smoothing. For example, LS smoothes using fixed
constants, while CPC determines the degree of smoothing
based on the probabilities. Note that an indicator function
of CPC is always 1.

S1.3. MDCA

Gradients. MDCA [9] presents a differentiable version
of ECE that approximates ECE in a mini-batch. MDCA
exploits it for a regularizer directly. The loss function is
defined as follows:

L = LCE + LMDCA

= LCE + λ

C∑
k=1

1

N

∣∣∣∣∣
N∑

n=1

p
(n)
i −

N∑
n=1

q
(n)
i

∣∣∣∣∣ , (9)

where λ is a hyperparameter and n is an index of an input
sample. 1

N

∑N
n=1 q

(n)
i represents a ratio of input samples

for class i in a mini-batch. Thus, LMDCA in Eq. (9) encour-
ages pi to have the same value of the ratio for class i. We
compute the gradients of Eq. (9) w.r.t zj as follows:
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(10)

We define ak = sgn
(

1
N

∣∣∣∑N
n=1 p

(n)
k −

∑N
n=1 q

(n)
k

∣∣∣),
where we denote by sgn(·) a sign function whose value is 1
if the argument is positive and −1 otherwise. If pŷ is over-
confident, while pj (j ̸= ŷ) are underconfident (i.e., aj is 1
if j = ŷ and −1 otherwise.), Eq. (10) reduces as follows:

∂L
∂z

(n)
j

=

{
pj − (qj − λpj (1−

∑
k akpk)) , j = ŷ

pj − (qj + λpj (1 +
∑

k akpk)) , j ̸= ŷ
,

(11)
where we omit n and N for brevity.

Smoothing and indicator functions. We define a
smoothing function of MDCA from Eq. (11) as follows:

f(zj) =

{
λpj (1−

∑
k akpk) , j = ŷ

λpj (1 +
∑

k akpk) , j ̸= ŷ
. (12)

We observe that |
∑

k ̸=ŷ akpk| ≪ |aŷpŷ| and thus we can
formulate Eq. (12) as the fourth row in Table 2 in the main
paper as follows:

f(zj) =

{
λpj (1− pj) , j = ŷ

λpj (1 + pŷ) , j ̸= ŷ
. (13)

Eq. (13) suggests that MDCA reduces the labels if the prob-
ability for j = ŷ is overconfident, and raises the labels if the
probabilities for j ̸= ŷ are underconfident. For cases other
than specified in Eq. (11) (i.e., aj is 1 if j = ŷ and −1 oth-
erwise.), Eq. (10) still reduces the label if pj is higher than
the ratio for class j, and vice versa if pj is lower than the
ratio. Note that an indicator function of MDCA is always 1.

S1.4. MbLS

Gradients. While LS [21] adjusts qj for all j, MbLS [14]
regularizes each label selectively by exploiting a margin M .
Specifically, its loss function is as follows:

L = LCE + LMbLS

= LCE + λ

C∑
k=1

max (0, zŷ − zk −M) ,
(14)

When zŷ − zj −M ≥ 0, we compute its gradients w.r.t zj
as follow:

∂L
∂zj

=
∂LCE

∂zj
+

∂LMbLS

∂zj

= pj − qj + λ
∂

∂zj

(
C∑

k=1

zŷ − zk −M

)

=

{
pj − qj , j = ŷ

pj − (qj + λ) , j ̸= ŷ
.

(15)



Smoothing and indicator functions. Note that MbLS
penalizes the label using a constant (e.g., λ). Thus, we can
define a smoothing function as follows:

f(zj) = λ. (16)

Considering that Eq. (15) reduces to the gradients of CE if
zŷ − zj −M < 0, we define an indicator function of MbLS
as follows:

C(zj) =

{
0, j = ŷ

1[zŷ − zj ≥ M ], j ̸= ŷ
. (17)

S1.5. CRL

Gradients. CRL [17] formulates network calibration as
an ordinal ranking problem [2]. It determines whether to
apply regularization by using a ranking condition. Its loss
function is as follows:

L = LCE + LCRL

= LCE + λ
∑
n,m

max
(
0,−sgn(H(n,m))(p

(n)
ŷ − p

(m)
ŷ )

)
.

(18)

where n and m are indices of input samples in the train-
ing dataset. We define H(n,m) = h(n) − h(m), where
h(n) stores a ranking history of the n-th sample in a train-
ing dataset. In practice, n and m are selected only in a
mini-batch and LCRL is calculated using a ranking loss [22].
When the ranking condition is satisfied (e.g., h(n) < h(m)

but p(n)ŷ ≥ p
(m)
ŷ ), LCRL has a non-zero value. In this case,

we can compute the gradients of Eq. (18) w.r.t z(n)j for the
specific n as follows:

∂L
∂z

(n)
j

=
∂LCE

∂z
(n)
j

+
∂LCRL

∂z
(n)
j

= p
(n)
j − q

(n)
j + λ

∂p
(n)
ŷ
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(19)

since −sgn(H(n,m)) = 1 and
∂p

(m)
ŷ

∂z
(n)
j

= 0.

Smoothing and indicator functions. Based on Eq. (19),
we first define a smoothing function of CRL as follows:

f(zj) =

{
λpj(1− pj), j = ŷ

λpŷpj , j ̸= ŷ
, (20)

where we omit n for brevity. Considering that the gradients
of Eq. (19) are the same for those of CE if the ranking con-
dition is not satisfied, we can define its indicator function as
follows:

C(zj) = 1

[
H(n,m)(p

(n)
ŷ − p

(m)
ŷ ) < 0

]
. (21)

CRL adjusts the labels based on the values of probabil-
ity (Eq. (20)) only when the condition is satisfied (Eq. (21)).
Thus, we can view CRL as a combination of AR and
CR (ACR). Combining Eqs (20) and (21), we can obtain
the gradients of CRL w.r.t zj for the specific n in the form
of Eq. (8) in the main paper.

S2. More details
S2.1. Metrics

Following [1, 4, 6, 7, 9, 14, 16, 17, 18, 19], we report
expected calibration error (ECE) and adaptive ECE (AECE)
as calibration metrics. ECE is defined as follows:

ECE = Ep [P (ŷ = y|pŷ)− pŷ] . (22)

In practice, we approximate Eq. (22) by partitioning pre-
dictions into bin B. Specifically, we first divide a range
(0, 1] into M equidistance bins (e.g., if M = 5, the bins are
(0, 0.2], (0, 0.4], · · · , (0.8, 1.0]). Given a sample, we then
assign the sample to the specific bin according to the value
of prediction for each sample. For example, if the value of
prediction is 0.9 and M = 5, the sample is assigned to the
fifth bin. Following this protocol, we reformulate Eq. (22)
as follows:

ECE =

M∑
i=1

|Bi|
N

|acc (Bi)− conf (Bi)| , (23)

where Bi is the i-th bin and N is the number of samples. To
visualize reliability diagrams, we compute the average ac-
curacies and the calibration errors in each bin. For comput-
ing AECE, we partition the range (0, 1] into M bins, each
of which includes the same number of samples, instead of
dividing the range into the equidistance bins.

S2.2. Hyperparameters

To set the hyperparameters λ1 and λ2 of Eq. (10)
in the main paper, we perform a grid search on the
cross-validation split of Tiny-ImageNet [12]: λ1 ∈
{0, 0.05, 0.1, 0.15} and λ2 ∈ {0, 0.005, 0.01, 0.015}. For
ImageNet [3], we use the hyperparameters obtained from
Tiny-ImageNet since the search on ImageNet is computa-
tionally demanding. We summarize in Table A the results of
grid search on the cross-validation split of Tiny-ImageNet.
We set λ1 to 0.1 and λ2 to 0.01, respectively. Follow-
ing [14], we set the margin M to 10. We also provide the
ablation study for M in Sec. S3.



Table A: Comparisons of ACC (%) and ECE (%) on the cross-
validation split of Tiny-ImageNet [12] (ACC/ECE). We train
ResNet-50 accordring to the values of λ1 and λ2. ECE is com-
puted with 15 bins. -: Fail to converge.

λ1

λ2 0 0.005 0.01 0.015

0 64.62 / 4.39 64.43 / 3.42 55.81 / 2.94 -/-
0.05 64.83 / 2.36 64.83 / 1.95 64.76 / 1.73 64.48 / 1.41
0.1 65.43 / 2.67 64.74 / 1.94 65.40 / 1.31 65.17 / 1.52
0.15 65.04 / 2.71 65.18 / 1.44 65.23 / 1.42 64.11 / 1.47

6 8 10 12 14

margin

2

3

4

5

6

7

EC
E 

(%
)

Trainval ECE (%)

Figure A: Comparisons of ECE accordring to the value of M on
the cross-validation (trainval) split of Tiny-ImageNet [12]. We use
ResNet-50 [8] and compute ECE with 15 bins.

S3. More results and discussions

Effects of margins. We show in Fig. A ECE accordring
to the value of M on the cross-validation split of Tiny-
ImageNet [12]. From the figure, we have two findings: (1)
If the margin is too small, the network is poorly calibrated.
A plausible reason is that the condition is easily satisfied,
and thus the regularization term penalizes well-calibrated
probabilities also. (2) When the margin is too large, ECE is
degraded also. This is because the margin condition is not
satisfied even for the miscalibrated probabilities, disturbing
calibration.

Additional results. We show in Table B quantita-
tive comparisons with our method and other calibra-
tion approaches, including temperature scaling (TS) [7],
MMCE [11], CutMix [10], CaPE-bin [15], and MCdrop [5],
on image classification. For a fair comparison, we have re-
produced all results with the same experimental configura-
tion, including a network architecture and a dataset, except
for the numbers of Patra et al. [20] which are taken from the
paper. From Table B, we can clearly see that ACLS outper-
forms all methods by a significant margin in terms of ECE
and AECE.

Comparisons with other non-label smoothing-based
methods. We show quantitative comparisons with our
method, CutMix [10], CaPE-bin [15], and MCdrop [5] in
Table B. CutMix is a data augmentation strategy that re-
places a region of an input image with a patch from another

Table B: Quantitative results on the validation split of Tiny-
ImageNet [12] in terms of ACC, ECE, and AECE. We compute
the calibration metrics with both 10 and 15 bins using ResNet-
50 [8], since Patra et al. [20] provides the numbers for 10 bins
only. The number of CE+TS [7] in parentheses is an optimal tem-
perature tuned on a held-out set of Tiny-ImageNet.

Method
# of bins 10 bins 15 bins

ACC ↑ ECE ↓ AECE↓ ACC ↑ ECE ↓ AECE↓

CE 65.02 3.74 3.68 65.02 3.73 3.69
CE+TS (1.1) [7] 65.02 1.55 1.43 65.02 1.63 1.52
MMCE [11] 64.75 5.18 5.12 64.75 5.15 5.12
CutMix [10] 65.11 2.60 2.60 65.11 2.71 2.66
CaPE-bin [15] 59.78 2.91 2.61 59.78 2.99 2.96
MCdrop [5] 65.33 2.56 2.49 65.33 2.58 2.54
Patra et al. [20] 48.74 1.44 - 48.74 - -
ACLS (Ours) 64.84 0.91 0.92 64.84 1.05 1.03

one. While CutMix is originally introduced to improve the
generalization ability of neural networks, it has proven to
be effective for network calibration. However, it often re-
moves salient regions of images and produces inappropri-
ate examples, which might degrade the discriminative abil-
ity of networks. CaPE is a regularization-based calibration
method that exploits an accuracy of each sample directly.
It assigns samples to particular bins and exploits accura-
cies for the bins (empirical accuracy) as target labels for
network calibration, optimizing networks directly in terms
of ECE. Computing the empirical accuracies of samples
is however computationally demanding. MCdrop approx-
imates the Bayesian inference with multiple predictions us-
ing dropout layers. This reduces the computational cost
for uncertainty estimation, but still requires several forward
passes for predictions. On the contrary, our method pro-
vides well-calibrated predictions in a single forward pass.
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