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A. Details for optimization

To optimize our COMPASS, we use the CLIC [15]
dataset which includes 1,633 high-resolution images. As
mentioned in the main paper, we separately pre-train the
residual compression module and the LIFF module, and
further train the overall architecture for ease of conver-
gence. We pre-train the residual compression module with
a three-layer scalability (one BL and two ELs) using ran-
domly selected scale factors, while keeping the image com-
pression module of the BL frozen. The training images
are cropped into fixed patches of 512×512 size, resulting
in 19,813 patches that serve as inputs. To generate mul-
tiple downscaled versions of the input patches, we apply
different downscale factors to the original input patches of
512×512 size. Specifically, we produce three downscaled
versions, denoted as I0, I1, and I2, where I0 has a down-
scale factor of 0.25, and I1 and I2 have downscale factors
randomly selected from a uniform distribution U(0.25, 0.5)
and U(0.5, 1), respectively. It should be noted that dur-
ing the pre-training of the residual compression module, we
substitute the LIFF module in our COMPASS architecture
with a simple bicubic interpolation function for generating
the residual image Íkres as

Íkres = Ik −B↑(Î
k−1), (1)

where B↑(·) refers to a bicubic interpolation function used
to increase the resolution of Îk−1 to match Ik. We use
this function to prevent the training of the residual com-
pression module from being unstable by the insufficiently
trained LIFF module in the early optimization stage. We set
the batch size to 8 and the initial learning rate to 5 × 10−5

without any decay. We pre-train the residual compression
module for 600 epochs, using the combined RD loss func-
tion in Eq. 5 of the main paper. To pre-train the LIFF
module, we crop the training images into patches of size
128×128, resulting in a total of 269,296 patches. These
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patches are then randomly downscaled by the scale factors
of a uniform distribution U(0.5, 1). We set the batch size to
64, and the initial learning rate to 1 × 10−4, while apply-
ing a step decay strategy with a decay factor of 0.5 every
50 epochs. We pre-train the LIFF module for 200 epochs,
using an L1 loss function. To jointly train the overall COM-
PASS architecture with the two pre-trained modules, we set
the total number of epochs to 300, and the initial learning
rate to 5 × 10−5 with step decay every 100 epochs using
a decay factor of 0.5. Other settings, such as the batch
size, the loss function, and the image downscaling proce-
dure, are the same as those used for the pre-training of the
residual compression module. For all training procedures,
we utilize the Adam [8] optimizer. We also clip the max-
imum gradient norm to 1.0 to prevent gradient explosions
and ensure a stable optimization. We use four A100 GPUs
to train our COMPASS architecture. Additionally, we train
four different quality versions of our COMPASS by select-
ing the values of λ for the combined RD loss function with
λ = 0.0018, 0.0035, 0.0067 and 0.013.

B. Additional experimental results

B.1. Coding efficiency of BL and EL-1 in three-layer
scalability with a fixed scale factor of 2

In addition to the coding efficiency comparison for the
final EL in the main paper, we further present the coding
efficiency comparison results for both BL and EL-1 in a
three-layer scalability with a fixed scale factor of 2. Table 1
shows the coding efficiency performance of our COMPASS
for the BL in terms of BD-rate, compared to other meth-
ods. It should be noted that we use the same frozen image
compression module as Simulcast (Mean-scale [12]) and
Single-layer (Mean-scale [12]), which means that the cod-
ing efficiencies of these two methods are exactly the same as
that of our BL. Figure 1 shows the rate-PSNR performance
curves for Table 1. Table 2 shows the coding efficiecy per-
formance comparison for the EL-1, and Figure 2 shows the



Methods BD-rate↓

SHVC [2] -24.97%
Simulcast (Factorized [1]) -12.96%
Simulcast (Mean-scale [12]) -
Mei et al. [11] (original) -18.48%
Mei et al. [11] (enhanced) -18.31%
Single-layer (Mean-scale [12]) -

Table 1: Coding efficiency comparison for a three-layer
scalable coding with a fixed scale factor of 2. BD-rate gains
of our COMPASS over the various methods are measured
in the BL where the negative values indicate BD-rate gains
of our COMPASS.

Methods BD-rate↓

SHVC [2] -35.87%
Simulcast (Factorized [1]) -31.89%
Simulcast (Mean-scale [12]) -16.29%
Mei et al. [11] (original) -28.20%
Mei et al. [11] (enhanced) -13.52%
Single-layer (Mean-scale [12]) 8.80%

Table 2: Coding efficiency comparison for a three-layer
scalable coding with a fixed scale factor of 2. BD-rate gains
of our COMPASS over the various methods are measured in
the EL-1 where the negative values indicate BD-rate gains
of our COMPASS.

corresponding rate-PSNR performance curves. As shown in
both Table 1 and Table 2, our COMPASS significantly out-
performs the existing spatially scalable coding methods for
both the BL and EL-1, as can be seen in the results obtained
for the final EL in the main paper.

B.2. Rate-PSNR performance curves for arbitrary
scale factors

We plot the rate-PSNR performance curves for the re-
sults in Tables 2 and 3 of the main paper. Figures 3 through
6 show the rate-PSNR performance curves for a two-layer
scalability with four different scale factors of 1.2×, 1.6×,
2.4× and 2.8× between BL and EL-1, while Figures 7
through 10 show the rate-PSNR performance curves for a
three-layer scalability with a fixed scale factor of 2 between
BL and EL-1 and four different scale factors of 2.4×, 2.8×,
3.2× and 3.6× between BL and EL-2.

B.3. Coding efficiency on additional datasets

We additionally evaluate our method on additional
datasets with higher resolutions than the Kodak Lossless
True Color Image [6] dataset to demonstrate the versatil-
ity of our COMPASS. Table 3 presents the coding effi-
ciency comparison for three-layer scalable coding with a
fixed scale factor of 2 on the large Urban100 [7] dataset.
This dataset is a widely used for super-resolution tasks and

Methods BD-rate↓

Simulcast (Mean-scale [12]) -29.09%
Mei et al. [11] (enhanced) -24.77%
Single-layer (Mean-scale [12]) -2.30%

Table 3: Coding efficiency comparison for a three-layer
scalable coding with a fixed scale factor of 2 on the Ur-
ban100 [7] dataset. BD-rate gains of our COMPASS over
the various methods are measured in the final EL where the
negative values indicate BD-rate gains of our COMPASS.

Methods BD-rate↓

Simulcast (Mean-scale [12]) -26.50%
Mei et al. [11] (enhanced) -23.10%
Single-layer (Mean-scale [12]) 4.01%

Table 4: Coding efficiency comparison for a three-layer
scalable coding with a fixed scale factor of 2 on the CLIC
2021 validation [15] dataset. BD-rate gains of our COM-
PASS over the various methods are measured in the final
EL where the negative values indicate BD-rate gains of our
COMPASS.

contains multiple scales. Impressively, our COMPASS even
outperforms the single-layer coding with -2.30% BD-rate
gain, and shows significant superiority against Simulcast
(Mean-scale [12]) and Mei et al. [11]’s enhanced version.
Table 4 presents the coding efficiency comparison for three-
layer coding with a fixed scale factor of 2 on the CLIC
2021 validation [15] dataset, which contains 2K resolution
images. In this table, our COMPASS exhibits higher per-
formance for higher resolution images when compared to
its performance using the Kodak Lossless True Color Im-
age [6] dataset. This emphasizes the enhanced capabilities
of our approach for handling higher resolution scenarios.

B.4. Coding efficiency with out-of-distribution scale
factors

Table 5 presents the coding efficiency comparison for
three-layer scalable coding with larger scale factors than
4.0× which are out of training distribution. For this table,
we set the scale factor of the final EL (EL-2) relative to the
BL to 4.5×, 5.0×, 5.5×, and 6.0×, respectively. We set the
scale factor of the EL-1 relative to the BL to 2, equally.

B.5. Coding efficiency with more combinations of
arbitrary scale factors

Table 6 through 9 present the coding efficiency compari-
son in terms of BD-rate for three-layer scalable coding (one
BL and two ELs) with more combinations of arbitrary scale
factors. For each table, we set the scale factor of the EL-1
relative to the BL to 1.2×, 1.4×, 1.6× and 1.8×, respec-
tively. Additionally, we set the scale factor of the final EL
to 2.4×, 2.8×, 3.2×, 3.6× and 4.0× with respect to the BL.



Methods Scale Factors (vs. BL)

4.5× 5.0× 5.5× 6.0×
Simulcast
(Mean-scale [12]) -21.24% -19.94% -18.52% -17.85%

Single-layer
(Mean-scale [12]) 6.77% 7.77% 8.99% 8.76%

Table 5: Coding efficiency comparison for a three-layer
scalable coding with out-of-distribution scale factors. BD-
rate gains of our COMPASS over the methods are measured
in the final EL where the negative values indicate BD-rate
gains of our COMPASS. We set the scale factor of the EL-1
relative to the BL to 2, equally.

B.6. Additional ablation study for the LIFF module

We compare our method to the ablated model which uses
LIIF [3] rather than our LIFF module. The experiment is
conducted for the three-layer scalability with a fixed scale
factor of 2. Our method achieves a 26% reduction in FLOPs
(811G) and a 9.5% reduction in average prediction time
(0.019 sec.) compared to the ablated model (1.1T FLOPs
and 0.021 sec.), achieving -0.64% BD-rate gain.

C. Additional visual results

C.1. Visual results for multi-layer scalable coding
with more than three layers

Figures 11 and 12 show the visual results of our COM-
PASS for multi-layer scalable coding greater than three lay-
ers. We consider the total number of layers with three, four,
five, six and nine, and compare the PSNR values and accu-
mulated bits in each layer. As shown in Figures 11 and 12,
our COMPASS shows faithful reconstructions over various
layers.

C.2. Additional visual results for three-layer scal-
able coding

Figures 13 through 19 show the visual results of our
COMPASS in comparison with SHVC [2], the simulcast
coding, and Mei et al. [11] for a three-layer scalable cod-
ing with a fixed scale factor of 2 between adjacent layers.
The images shown in Figure 13 through 19 are the largest-
sized reconstructions obtained from the final EL. As shown
in Figures 13 through 19, it is noted that our COMPASS
can better reconstruct high-frequency details such as tex-
ture, edges and small image structures at the usage of simi-
lar bit amounts.

D. Limitations and future work

Due to the hierarchical architecture, the computational
complexity of our COMPASS eventually becomes higher as
the number of layers increases, which may yield a challenge

for real-time applications and devices with limited compu-
tational resources. It should be noted that this complexity
issue is not the issue that only our COMPASS is facing,
but the issue given to the research domain of scalable cod-
ing where almost all studies are based on the hierarchical
coding architecture, so further study is required for a more
consistent method in terms of complexity increase.

In addition, although our COMPASS successfully
achieves more powerful spatial scalability in terms of the
scale factors and the number of layers, a single COMPASS
model (including the compression modules in the base layer
and enhancement layer) is optimized for its designated tar-
get compress quality. Therefore, separately trained multi-
ple COMPASS models are necessary to deal with the var-
ious target compression qualities, which leads to an in-
crease in the number of total model parameters. Meanwhile,
a few studies on variable-rate NN-based image compres-
sion [4, 5, 13, 14, 10, 9] show promising results, so we ex-
pect we can integrate those variable-rate techniques into our
COMPASS. In the future, we’ll further enhance our COM-
PASS based on the priors of the NN-based image compres-
sion research area from the perspective of practicality and
flexibility, as well as improve its coding efficiency.



Figure 1: The rate-PSNR performance curves of the BLs for SHVC [2], the simulcast coding, Mei et al. [11], and our
COMPASS. The experiment is conducted with a three-layer scalability (one BL and two ELs (EL-1: 2.0× and EL-2: 4.0×)).
The ‘bits’ indicates the bits corrensponding to the BL.

Figure 2: The rate-PSNR performance curves of the intermediate ELs for SHVC [2], the simulcast coding, Mei et al. [11],
the single-layer coding, and our COMPASS. The experiment is conducted with a three-layer scalability (one BL and two ELs
(EL-1: 2.0× and EL-2: 4.0×)) The ‘acc. bits’ indicates the accumulated bits up to the EL-1.



Figure 3: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a two-layer scalability (one BL and one EL
(EL-1: 1.2×)). The ‘acc. bits’ indicates the accumulated
bits up to the final EL.

Figure 4: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a two-layer scalability (one BL and one EL
(EL-1: 1.6×)). The ‘acc. bits’ indicates the accumulated
bits up to the final EL.

Figure 5: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a two-layer scalability (one BL and one EL
(EL-1: 2.4×)). The ‘acc. bits’ indicates the accumulated
bits up to the final EL.

Figure 6: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a two-layer scalability (one BL and one EL
(EL-1: 2.8×)). The ‘acc. bits’ indicates the accumulated
bits up to the final EL.



Figure 7: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a three-layer scalability (one BL and two
ELs (EL-1: 2.0× and EL-2: 2.4×)). The ‘acc. bits’ indi-
cates the accumulated bits up to the final EL.

Figure 8: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a three-layer scalability (one BL and two
ELs (EL-1: 2.0× and EL-2: 2.8×)). The ‘acc. bits’ indi-
cates the accumulated bits up to the final EL.

Figure 9: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a three-layer scalability (one BL and two
ELs (EL-1: 2.0× and EL-2: 3.2×)). The ‘acc. bits’ indi-
cates the accumulated bits up to the final EL.

Figure 10: The rate-PSNR performance curves of the final
ELs for SHVC [2], the simulcast coding, Mei et al. [11], the
single-layer coding, and our COMPASS. The experiment is
conducted with a three-layer scalability (one BL and two
ELs (EL-1: 2.0× and EL-2: 3.6×)). The ‘acc. bits’ indi-
cates the accumulated bits up to the final EL.



Methods Scale Factors (vs. BL)

2.4× 2.8× 3.2× 3.6× 4.0×
SHVC [2] -41.91% -36.68% -33.47% -30.79% -21.63%

Simulcast
(Factorized [1]) -48.75% -44.69% -41.91% -39.42% -34.01%

Simulcast
(Mean-scale [12]) -34.75% -29.16% -24.11% -20.03% -12.23%

Mei et al. [11]
(original) -44.56% -37.14% -33.86% -32.63% -31.03%

Mei et al. [11]
(enhanced) -35.12% -25.14% -19.13% -15.88% -12.83%

Single-layer
(Mean-scale [12]) -1.32% -1.49% -0.34% 0.64% 6.47%

Table 6: Coding efficiency comparison for a three-layer
scalable coding with arbitrary scale factors. BD-rate gains
of our COMPASS over the various methods are measured
in the final EL where the negative values indicate BD-rate
gains of our COMPASS. We set the scale factor of the EL-1
relative to the BL to 1.2×, equally.

Methods Scale Factors (vs. BL)

2.4× 2.8× 3.2× 3.6× 4.0×
SHVC [2] -45.51% -39.90% -36.72% -33.99% -24.78%

Simulcast
(Factorized [1]) -51.88% -47.31% -44.40% -41.86% -36.15%

Simulcast
(Mean-scale [12]) -38.69% -32.53% -27.45% -23.35% -15.44%

Mei et al. [11]
(original) -44.81% -37.27% -34.14% -33.16% -31.42%

Mei et al. [11]
(enhanced) -35.29% -25.26% -19.59% -16.58% -13.43%

Single-layer
(Mean-scale [12]) -1.88% -1.67% -0.83% -0.14% 5.68%

Table 7: Coding efficiency comparison for a three-layer
scalable coding with arbitrary scale factors. BD-rate gains
of our COMPASS over the various methods are measured
in the final EL where the negative values indicate BD-rate
gains of our COMPASS. We set the scale factor of the EL-1
relative to the BL to 1.4×, equally.

Methods Scale Factors (vs. BL)

2.4× 2.8× 3.2× 3.6× 4.0×
SHVC [2] -49.05% -43.39% -39.80% -36.93% -27.38%

Simulcast
(Factorized [1]) -55.84% -50.56% -47.26% -44.41% -38.96%

Simulcast
(Mean-scale [12]) -42.84% -36.22% -30.74% -26.43% -18.61%

Mei et al. [11]
(original) -45.16% -37.73% -34.48% -33.52% -32.02%

Mei et al. [11]
(enhanced) -35.41% -25.78% -19.99% -17.03% -14.10%

Single-layer
(Mean-scale [12]) -3.13% -2.44% -1.33% -0.66% 4.90%

Table 8: Coding efficiency comparison for a three-layer
scalable coding with arbitrary scale factors. BD-rate gains
of our COMPASS over the various methods are measured
in the final EL where the negative values indicate BD-rate
gains of our COMPASS. We set the scale factor of the EL-1
relative to the BL to 1.6×, equally.

Methods Scale Factors (vs. BL)

2.4× 2.8× 3.2× 3.6× 4.0×
SHVC [2] -53.17% -46.56% -42.78% -39.72% -29.96%

Simulcast
(Factorized [1]) -59.49% -53.63% -49.64% -46.51% -41.06%

Simulcast
(Mean-scale [12]) -47.71% -40.15% -34.24% -29.65% -21.82%

Mei et al. [11]
(original) -46.28% -38.15% -34.64% -33.69% -32.21%

Mei et al. [11]
(enhanced) -36.63% -25.81% -20.21% -17.24% -14.39%

Single-layer
(Mean-scale [12]) -5.34% -3.18% -1.65% -0.90% 4.53%

Table 9: Coding efficiency comparison for a three-layer
scalable coding with arbitrary scale factors. BD-rate gains
of our COMPASS over the various methods are measured
in the final EL where the negative values indicate BD-rate
gains of our COMPASS. We set the scale factor of the EL-1
relative to the BL to 1.8×, equally.



Figure 11: Visual results for multi-layer scalable coding for kodim07.png image in Kodak Lossless True Color Image
dataset [6] (best viewed in digital format). The ‘acc. bits’ indicates the accumulated bits up to the corresponding layer.



Figure 12: Visual results for multi-layer scalable coding for kodim20.png image in Kodak Lossless True Color Image
dataset [6] (best viewed in digital format). The ‘acc. bits’ indicates the accumulated bits up to the corresponding layer.



Figure 13: Visual comparison results for kodim05.png image in Kodak Lossless True Color Image dataset [6] (best viewed in
digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match the accumulated bits among the
compared methods as much as possible.



Figure 14: Visual comparison results for kodim08.png image in Kodak Lossless True Color Image dataset [6] (best viewed in
digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match the accumulated bits among the
compared methods as much as possible.



Figure 15: Visual comparison results for kodim13.png image in Kodak Lossless True Color Image dataset [6] (best viewed in
digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match the accumulated bits among the
compared methods as much as possible.



Figure 16: Visual comparison results for kodim14.png image in Kodak Lossless True Color Image dataset [6] (best viewed in
digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match the accumulated bits among the
compared methods as much as possible.



Figure 17: Visual comparison results for kodim16.png image in Kodak Lossless True Color Image dataset [6] (best viewed in
digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match the accumulated bits among the
compared methods as much as possible.



Figure 18: Visual comparison results for kodim21.png image in Kodak Lossless True Color Image dataset [6] (best viewed in
digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match the accumulated bits among the
compared methods as much as possible.



Figure 19: Visual comparison results for kodim24.png image in Kodak Lossless True Color Image dataset [6] (best viewed in
digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match the accumulated bits among the
compared methods as much as possible.
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