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Figure S1: Our CAL-GAN utilizes distribution-aware classifiers during the adversarial training and successfully super-resolves
real-world low-resolution images. Input images are crawled from Google.
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S1. Introduction
Our CAL-GAN introduces a novel concept of content-

aware local adversarial learning and reconstructs photo-
realistic SR images from inputs as shown in Figure S1. In
Section S2, we provide implementation details and efficient
implementation of our discriminator architecture. In Sec-
tion S3 and S4, we describe details about ablation studies in
Section 4 of our main manuscript and provide additional ab-
lation studies. In Section S5, we provide more visual com-
parisons to demonstrate the superiority of our CAL-GAN
compared to the other perceptual SR models. We also note
that all references are shared with our main manuscript.

S2. Discriminator Architecture
S2.1. Building blocks

Figure S2 shows the overall architecture of our CAL-
GAN again. As explained in the main manuscript, our
discriminator takes a high-resolution image IHR or super-
resolved image ISR as its input and classifies each local fea-
ture whether it is drawn from real or fake distributions. Let
us describe the discriminator architecture in detail. For sim-
plicity, we denote both IHR and ISR, and their corresponding
features FHR and FSR as I∗ and F∗, respectively.

Feature extraction. We first extract F∗ from the given
input I∗. The feature extractor consists of seven repeated
Conv-BN-ReLU, where the second and sixth convolutions
use stride of 2. Since the remaining convolutional layers
use stride of 1, height and width of F∗ are reduced by 1/4
compared to the original input I∗.

Router architecture. We note that our routing module
operates differently on HR feature FHR and FSR. For an
input HR feature FHR, the router first predicts the corre-
sponding pixel-wise label. To this end, we employ a sin-
gle 1 × 1 convolution without any activation function, as
shown in Figure S2. The output of the convolutional layer
has N = 12 channels, where N represents the number of
the feature clusters or the classifiers. We apply Gumbel-
Softmax across the channel dimension to construct N dis-
joint spatial binary masks Ri, as described in (2) in our
main manuscript. For FSR, we use the binary mask gen-
erated from its corresponding HR features FHR.

Orthogonal convolutions and classifiers. We employ N
orthogonal convolutions to project N disjoint feature clus-
ters to separated domains. Note that orthogonal convolu-
tions do not change the dimensions of each input. Then, we
use N independent classifiers {C1, C2, · · · , CN} to discrim-
inate whether pixels in each input feature Fi looks realistic
or not. Each classifier consists of two 1 × 1 convolutions

C

Figure S2: Overall discriminator architecture of the proposed
CAL-GAN framework.

and a ReLU activation in between. We note that our router
and classifiers have similar architectures, while the classi-
fier output has a single channel only.

S2.2. Efficient implementation

Compared to the single-classifier configuration, our
multi-classifier formulation requires additional computa-
tions for determining the real-fake labels of each local out-
put. Specifically, the discriminator output D is a sum-
mation of N classifier outputs Ci (F∗

i ) as described in (8)
of our main manuscript. To reduce the training over-
head, we introduce the more efficient implementation of the
multi-classifier system. Rather than performing dense spa-
tial convolutions on F∗

i , we first compose a dense vector
F̂∗

i ∈ Rc×ni by collecting pixels from F∗
i , which satisfy

Ri [y, x] = 1. We note that ni =
∑

y,x Ri[y, x] is a num-
ber of valid pixels in the corresponding feature F∗

i . As our
classifier consists of 1 × 1 convolutions, it maps each c-
dim input vector to a single scalar. Therefore, we can effi-
ciently acquire pixel-wise labels D̂i ∈ R1×ni by applying
the classifier Ci to the rearranged features F̂∗

i . Finally, we
construct the dense prediction D by gathering the predicted
class-wise labels D̂i based on the original locations of pix-
els. We also note that such an implementation is for training
time efficiency, and our discriminator is not used during in-
ference.

S3. Details about our Ablation Study
S3.1. Details about model comparison

Table 1 of our main manuscript provides a quantitative
comparison between the proposed CAL-GAN and other
state-of-the-art approaches. Among them, all RRDB-based
methods are based on Residual-in-Residual Dense Blocks.
We note that ESRGAN, LDL, and our CAL-GAN share the
same SR model architecture. On the other hand, SPSR [32]
utilizes an additional gradient branch to estimate the trans-
lation of gradient maps. USRGAN [57] adopts the concept
of iterative optimization by deep unfolding network (USR-
Net). Table S1 shows that CAL-GAN has the same com-
putational cost as other RRDB-based models, while being
more efficient than USRGAN and SPSR.
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ESRGAN USRGAN SPSR LDL CAL-GAN

MACs(G) 294.24 2431.79 869.24 294.24 294.24
Params(MB) 16.7 17.0 24.8 16.7 16.7

Table S1: Computational efficiency comparison for the RRDB-
based methods. We note that ESRGAN, LDL, and our CAL-
GAN share the same SR model for the generator. MACs are cal-
culated for a 128× 128 input image.

S3.2. Details about segmentation-based routing

Table 6 in our main manuscript compares the proposed
learning-based routing strategy with semantic segmenta-
tion. For comparison, we subdivide the original 81 (80 ob-
jects + background) classes into 12 subsets. Here, we de-
scribe the details of the subdivision.

• 0: {background}
• 1: {person}
• 2: {bicycle, car, motorcycle, airplane, bus, train, truck,

boat}
• 3: {traffic light, fire hydrant, stop sign, parking meter}
• 4: {bench, chair, couch, potted plant}
• 5: {bird, cat, dog, horse, sheep, cow, elephant, bear,

zebra, giraffe, teddy bear}
• 6: {backpack, umbrella, handbag, tie, suitcase, clock}
• 7: {frisbee, sports ball, baseball bat, baseball glove,

tennis racket, cell phone}
• 8: {skis, snowboard, skateboard, surfboard, kite}
• 9: {bottle, book, wine glass, cup, fork, knife, spoon,

bowl, vase, scissors, hair drier, toothbrush}
• 10: {banana, apple, sandwich, orange, broccoli, carrot,

hot dog, pizza, donut, cake}
• 11: {bed, dining table, toilet, tv, laptop, mouse, re-

mote, keyboard, microwave, oven, toaster, sink, refrig-
erator}

S4. Additional Ablation Study
In this Section, we introduce in-depth ablation studies of

our CAL-GAN that are not covered in our main manuscript.

Weight of the generator loss. A standard adversarial
training framework alternately updates the generator and
discriminator by the corresponding loss terms. In the pro-
posed CAL-GAN, the SR model is updated by optimizing
three independent loss terms, as described in (1) of our main
manuscript. Here, we investigate the effect of the gener-
ator loss Lgen, by varying its weight λg, as the term can
dramatically affect the stability of the overall training pro-
cess. Since our CAL-GAN achieves the best LPIPS with
λg = 0.005, we use the hyperparameter value by default
throughout our main manuscript.

Capacity of the discriminator. In our proposed MoC,
specialized discriminators are utilized on each local content,

λg 0.005 0.010 0.020 0.050 0.100

LPIPS 0.091 0.093 0.093 0.097 0.105

Table S2: Quantitative comparisons between our CAL-GAN
with different generator loss weights λg.

and the capacity of the discriminator can impact the overall
performance of CAL-GAN. We conduct an ablation study
to analyze the effect of discriminator capacity by utilizing a
U-Net-based discriminator or using our discriminator archi-
tecture with double the number of channels (Original×2),
as presented in Table S3. The results indicate a slight im-
provement in performance when using a larger discrimina-
tor. However, the U-Net-based discriminator did not per-
form well despite its larger capacity. This may be due to
the U-Net architecture having a much wider receptive field
than ours, making it challenging to assign dense pixel-wise
categories at the output side.

Discriminator architecture Params (M) LPIPS↓ FID↓ BRISQUE↓ DISTS↓

Original 2.68 0.091 11.772 13.576 0.049
Original×2 5.34 0.091 11.493 12.777 0.048
U-Net-based 4.38 0.094 13.480 14.349 0.052

Table S3: Effects of discriminator network architecture on
DIV2K (val).

Comparison with LDL with various backbone networks.
Table 1 in the main paper includes a comparison with the
RRDB baseline. In addition to that, we provide a compar-
ison using EDSR and SwinIR as baseline networks in Ta-
ble S4, while utilizing the second-best method, LDL. The
results demonstrate that CAL-GAN significantly enhances
the perceptual super-resolution performance across various
metrics.

Baseline Method LPIPS↓ FID↓ BRISQUE↓ DISTS↓

EDSR + LDL 0.081 16.352 11.850 0.053
+CAL-GAN 0.074 15.863 11.555 0.078

SwinIR + LDL 0.094 12.075 11.852 0.051
+CAL-GAN 0.087 12.097 11.406 0.048

Table S4: Further comparison with LDL on DIV2K (val).

Distribution of routing mask. In our main paper, we uti-
lized 12 classes to route local content to different classes. In
this work, we introduce a novel balancing loss Lb to ensure
an even distribution of classes. Figure S3 displays a his-
togram of the 12 classifiers, demonstrating that our router
evenly routes local content into different classes.

CAL-GAN for ×2 SR. Our main manuscript provides
analysis on ×4 CAL-GAN only. Here, we also compare
×2 CAL-GAN with the other representative SR models.
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Figure S3: Distribution of routing mask.

As shown in Table S5, our CAL-GAN achieves compara-
ble performance with the other state-of-the-art methods on
×2 SR task as well.

Metric ESRGAN LDL CAL-GAN

LPIPS↓ 0.0261 0.0260 0.0260

DISTS↓ 0.0142 0.0143 0.143

FID↓ 4.856 4.775 4.740

Table S5: Comparison with photo-realistic SR methods on ×2
SR (DIV2K (val)). Metrics for ESRGAN and LDL are referred
from [29].

Non-reference metrics on real-world images. Besides
providing visual results on real-world images in Figure 7
of our main manuscript, we provide a quantitative compar-
ison in Table S6. Since the high-resolution counterpart im-
age is not prepared for the real images, we show the non-
reference metrics in Table S6. The table demonstrates that
our CAL-GAN achieves BRISQUE comparable to BSR-
GAN and SoTA NIQE, outperforming other methods.

Metrics RealESRGAN [48] BSRGAN [58] CAL-GAN

BRISQUE↓ 5.77 5.60 5.60
NIQE↓ 18.01 20.16 16.18

Table S6: Non-reference metrics comparison on real-world Re-
alSRSet [58] dataset.

Routing mask visualization. In the main manuscript, we
present Figures 3 and 5, which show the routing mask R
using a limited number of colors for simplicity. However,
we provide a more detailed representation of the mask in
Figure S4 using a full range of 12 colors and a correspond-
ing color bar. Notably, unlike segmentation-based methods
that cannot distinguish between different classes of the same
object, our router can differentiate local content within the
same object. For instance, in the image in row 3, column 2,
our router accurately classifies a single object (e.g., a bird)
into multiple classifiers.

0 11

(b) Input (c) Routing mask (d) Input (e) Routing mask

Figure S4: Visualization of the routing mask.

S5. Additional Visual Comparison
We provide more qualitative results from our CAL-GAN

in Figure S5, S6, S7, S8, and S9, evaluated on synthetic LR
images. Also, Figure S10 and S11 illustrate the results of
our CAL-GAN applied on real-world LR images. The re-
sults clearly demonstrate that the proposed CAL-GAN pro-
duces perceptually better outputs on various types of inputs
compared to the existing methods.
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Figure S5: Qualitative comparison with state-of-the-art methods on synthetic datasets (1). Please zoom in for better details.
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Figure S6: Qualitative comparison with state-of-the-art methods on synthetic datasets (2). Please zoom in for better details.
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Figure S7: Qualitative comparison with state-of-the-art methods on synthetic datasets (3). Please zoom in for better details.
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Figure S8: Qualitative comparison with state-of-the-art methods on synthetic datasets (4). Please zoom in for better results.
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Figure S9: Qualitative comparison with state-of-the-art methods on synthetic datasets (5). Please zoom in for better results.
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Figure S10: Qualitative comparison with state-of-the-art methods on real-world images (1). The images are crawled from Google.
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Figure S11: Qualitative comparison with state-of-the-art methods on real-world images (2). The images are crawled from Google.
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