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Figure 6. Visualization of label distributions in datasets. (a) shows the illustrations of forward or reversely-unbalanced source (RS)
setting and backward or unbalanced target (UT) setting. In specific, forward and backward are used in CIFAR-10-C, CIFAR-100-C, and
ImageNet-C. In addition, RS and UT are utilized in VisDA-C and OfficeHome. (b) shows the natural label shift of DomainNet.

A. Implementation Details

In this section, we introduce further information regard-
ing the datasets, along with the implementation details for
the baseline test-time-adaptation (TTA) methods and the la-
bel shift adapter.

A.l. Datasets

Fig. 6 illustrates the label distributions for the datasets
utilized in our experiments. As depicted in Fig. 6 (a),
‘forward’ and ‘RS’ represent long-tailed label distributions,
with class order corresponding to the training label distribu-
tion. Conversely, ‘backward’ and ‘UT’ indicate a reversed
class order.

In the forward and backward settings, the imbalance ra-
tios for CIFAR-10-C, CIFAR-100-C, and ImageNet-C are
configured to 10, 25, and 100. We adjust the label distribu-
tion by reducing the number of images per class based on
the specified imbalance ratio. For VisDA-C, The imbalance
ratio is set to 100 for both training and test datasets. Fur-
thermore, we utilize an imbalanced version of OfficeHome
created by the previous research [43].

Fig. 6 (b) shows the label distributions of DomainNet, in
which existing label shifts are significant enough. The su-
perior performance of our method on DomainNet demon-
strates its ability to handle label shifts that arise in real-
world scenarios.

A.2. Details of Baselines

We carry out the experiments using the official imple-
mentations of the baseline models. We provide additional
details regarding the implementation specifics, including

hyperparameters. Note that the batch size for test-time
adaptation is configured to 64 for fair comparisons. For
simplicity, we present the hyperparameters in the following
sequence: {CIFAR-10-C, CIFAR-100-C, ImageNet-C,
VisDA-C, OfficeHome, DomainNet } for test-time adapta-
tion baselines. In instances where hyperparameters are not
separately described for each dataset, the same values are
employed across all datasets.

Source. Different from the previous TTA studies, we em-
ploy long-tailed datasets in our research. To mitigate model
bias towards the majority classes, we utilize a balanced
softmax [39], which is a prominent method for long-tailed
recognition. Formally, the balanced softmax is expressed

as:
£bal = - Z

(zi,yi)~Ds

y; log o (g; + log(ms)),

where 75 represents the frequency of the training classes,
and o denotes the softmax function.

Table 9 describes the hyperparameters utilized for train-
ing on source domain datasets. We select the hyperparam-
eters for VisDA-C, OfficeHome, and DomainNet in accor-
dance with the imbalanced source-free domain adaptation
study [22]. As described in the main manuscript, we utilize
pre-trained ResNet-50 and ResNet-101 on ImageNet, when
conducting the experiments on VisDA-C, OfficeHome, and
DomainNet. Moreover, the learning rate for the feature
extractor and the classifier is set to 0.1 XxLR and LR, re-
spectively, when training the model on VisDA-C, Office-
Home, and DomainNet. All experiments are conducted us-
ing NVIDIA RTX A5000 GPU.

BN Stats. BN stats [4 1] utilizes test batch statistics instead
of running statistics within batch normalization layers.
PseudoLabel. In accordance with previous studies [20, 46],



Src Data Tgt Data Model Optim. Scheduler Epoch Batch WD Momentum LR
CIFAR-10-LT CIFAR-10-C ResNet-18 SGD CosineAnneal 200 128 Se-4 0.9 0.1
CIFAR-100-LT CIFAR-100-C ResNet-18 SGD CosineAnneal 200 128 Se-4 0.9 0.1
ImageNet-LT ImageNet-C ResNeXt-50 SGD Manual 90 64 2e-4 0.9 0.1
VisDA-C (RS) VisDA-C (UT) ResNet-101 SGD - 15 40 le-3 0.9 le-3
OfficeHome (RS)  OfficeHome (UT) ResNet-50 SGD - 50 40 le-3 0.9 le-2
DomainNet DomainNet ResNet-50 SGD - 20 40 le-3 0.9 le-2

Table 9. Hyperparameters for training the model with source domain data. Src Data and Tgt Data denote source domain and target
domain datasets, respectively. Optim. indicates the optimizer. WD and LR denote the weight decay and learning rate for training. The
manual scheduler for ImageNet-LT is to decay the learning rate at 60 and 80 epochs.

Model Architecture

Forward-LT

Uni.

Backward-LT

Avg.

Yh Bhn AW Ab ‘ 50 25 10 1 10 25 50
v 51.20 49.30 46.06 37.36 27.28 23.75 21.84 36.69
v 48.79 42.45 32.10 15.21 22.52 24.09 25.14 30.04
v 51.32 49.36 46.11 37.17  27.06 23.56 21.71 36.61
v 52.50 50.19 46.64 37.51 28.95 25.56 24.06 37.92
v v 52.09 4948 45.43 35.92 29.60 26.82 26.25 37.94
v v 51.93 49.78 4643 37.18 27.71 24.28 22.57 37.12
v v v v 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

Table 10. Ablation study on architecture design of label shift adapter using CIFAR-100-LT and CIFAR-100-C.

we update the affine parameters in the batch normalization
layers using the hard pseudo labels. The learning rate is set
to {1e-3, le-3, 2.5e-4, 5e-5, 5¢-5, le-3} for each respective
dataset, following the hyperparameters of TENT [46].
ONDA. Online domain adaptation (ONDA) [32] modifies
the batch normalization statistics for target domains using a
batch of target data through an exponential moving average.
We set the update frequency N = 10 and the decay of the
moving average m = 0.1, adhering to the default values of
the original paper.

TENT. Test entropy minimization (TENT) [46] optimizes
the affine parameters of batch normalization layers via en-
tropy minimization. The learning rate is configured to {le-
3, le-3, 2.5e-4, 5e-5, 5e-5, le-3} for each dataset. We re-
ferred to the official implementation for hyperparameter se-
lection.

LAME. Laplacian adjusted maximum-likelihood estima-
tion (LAME) [4] alters the output probability of the clas-
sifier. Following the authors’ implementation, we set the
kNN affinity matrix with the value of & as 5.

CoTTA. Continual test-time adaptation (CoTTA) [47]
adapts the model to accommodate continually evolving
target domains by employing a weight-averaged teacher
model, data augmentations, and stochastic restoring.
CoTTA incorporates three hyperparameters: augmentation
confidence threshold py,, restoration factor p, and the decay
of EMA m. p and m are set to 0.01 and 0.999, respectively.
Additionally, py, is configured to { 0.92, 0.72, 0.01, 0.01,
0.01, 0.01 }. Given that the authors do not provide the hy-
perparameters for VisDA-C, OfficeHome, and DomainNet,

Algorithm 1 Training Process of Label Shift Adapter
Require: Dataset D, = {(x;,y:)}0" .
model f. A label shift adapter G4.

1: Initialize the parameters ¢ randomly

2: for k =1to K do
3: B < SampleMiniBatch(D, m)
> a mini-batch of m examples
4: 7, 7 < Sample({ms, u, Ts }, {Tr. s Tu> T2, })
> sample 7 matching 7
L(Gy) < % Z(x,y)es Lgia((2,y,m); f,Gg)
6: Gy < Gp —nVeL(Gy) > one SGD step
7: end for

A pre-trained

(9,1

we fine-tune the appropriate hyperparameters for them.

NOTE. Non-i.i.d. test-time adaptation (NOTE) [ 1] com-
prises two components: (i) Instance-aware batch normal-
ization (IABN), and (ii) Prediction-balanced reservoir sam-
pling (PBRS). In accordance with the original paper, we
substitute the batch normalization layers with IABN layers
before pre-training the source models. Two hyperparame-
ters are associated with IABN: soft-shrinkage width o and
EMA momentum m. The values of « are configured as {
4, 4,8, 8,8, 8}, while m is set to { 0.01, 0.01, 0.1, 0.1,
0.1, 0.1 }. The memory size of PBRS is set to 64, equal to
the batch size. In our experiments, we incorporate our label
shift adapter into the models using IABN layers.
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Figure 7. T-SNE visualizations of (a) TENT and (b) IABN+Ours. We visualize the feature map h obtained from the Gaussian noise
corruption in the CIFAR-10-C uniform test dataset. The number of training samples is large in the order of the classes in the legend.

Src Method  TTA Method Forward-LT Uni. Backward-LT Ave.
50 25 10 1 10 25 50

Source 4020 3726 33.18 2220 12.19 895 724  23.03

BN Stats 48.12 4544 40.17 2617 13.67 9.69 7.80  27.30

ONDA 4849 4580 41.16 2766 1517 11.02 898 2833

c PsecudoLabel  48.76 4526 39.09 19.84 11.32 8.19 644 2556

E ross TENT 49.17 4521 3842 1532 999 744 567  24.46

ntropy LAME 38.17 3517 3122 2044 11.02 793 630 2146

CoTTA 3283 2935 2572 1475 738 494 367 1695

NOTE 4641 4410 4049 2930 1577 1187 9.84 2826

IABN 4643 4392 3980 2535 1471 11.13 927 2723

+Ours 5320 5077 4626 3234 18.56 14.07 1174 3242

Source 3488 3254 29.12 2029 1180 9.09 751 2075

BN Stats 4507 4293 39.10 28.67 17.82 1397 11.88  28.49

ONDA 4479 4260 3901 2920 18.62 1465 1270  28.80

Balanceg  FcudoLabel  47.08 4466 4045 2698 1731 1359 1123 2876

S“ ‘”’;"’ TENT 4828 4564 41.07 2404 1688 1350 1130  28.67

amping . 1 AME 32.88 3044 27.08 18.48 1048 7.89  6.39 19.09

CoTTA 3038 28.68 2558 1732 1074 796 649  18.16

NOTE 46.62 4427 4064 3042 1699 1277 1032  28.86

IABN 46.85 4429 4040 2720 1612 1205 9.88  28.12

+Ours 5132 49.18 4499 3192 19.64 1511 13.00 32.16

Source 40.17 3747 3359 2323 1342 10.18 851  23.80

BN Stats 4833 4560 40.82 2749 1513 11.16 9.11  28.23

ONDA 4833 4577 4157 2896 1678 1250 1063  29.22

Classi PsecudoLabel ~ 49.10 45.89 40.19 21.01 1274 950 7.66  26.58

R ‘T‘“’ﬁ’ﬁ’ TENT 4970 46.19 3979 1659 1128 893 692  25.63

e-lrammng v AME 3822 3541 31.60 2148 1228 9.3 752 2223

CoTTA 3193 2923 2591 1526 8.18 555 433 1720

NOTE 4596 4404 41.14 31.68 1852 14.66 12.67 29.81

IABN 46.11 4404 4053 2761 1728 1371 11.94 2875

+Ours 53.11 50.86 46.66 34.04 2077 1641 14.12 33.71

Table 11. Ablation study on the source pre-trained model using CIFAR-100-LT and CIFAR-100-C.



A.3. Details of Label Shift Adapter

Model Architecture. We utilize the same model archi-
tecture for the label shift adapter across all datasets. The
proposed label shift adapter consists of two fully-connected
(FC) layers and a ReLU activation function, structured as
FC-ReLU-FC. Furthermore, the label shift adapter is par-
titioned into two neural networks producing (v, 8p) and
(AW, Ab). As described in the main manuscript, the label
shift adapter takes mT7 € R! and produces (v, 3,) and
(AW, Ab) in each respective neural network. The hidden
layer size in the label shift adapter is configured to 100.
Details of Label Shift Adapter. We provide the algo-
rithm of the training process for the label shift adapter as
a pseudo-code in Algorithm 1. The primary objective of
the label shift adapter is to learn the relationship between
« and adaptive parameters by selecting appropriate 7 based
on sampled 7 within generalized logit adjusted loss [33, 1]
function. Increasing 7 results in decision boundary shift-
ing away from the minority class towards the majority class.
Consequently, instead of sampling batches differently based
on w, we sample 7 and 7 iteratively, as described in Algo-
rithm 1. This enables the label shift adapter to optimize
its parameters in accordance with input label distributions
(e.g., m and Vo thereby producing suitable parameter ad-
justments.

During the training of the label shift adapter, we sam-
ple the label distribution 7 from three types of label dis-
tributions: {m,,u,7s}. For each sampled label distri-
bution, we select the appropriate 7 C {7x.,Tu, Tz},
with the hyperparameter 7 corresponding to each 7. Dif-
ferent 7 values are employed for each dataset. We
set 7 to {1,—1.5,3}, {1,0,—2}, {1,0,—2}, {1,0,—2},
{1,—1,-3}, and {1,0,—2}, for CIFAR-10-LT, CIFAR-
100-LT, ImageNet-LT, VisDA-C, OfficeHome, and Do-
mainNet, respectively.

The mapping vector m maps the label distribution’s vec-
tor to the scalar of the imbalance degree. We set the range of
m from -1 to 1, with the values increasing proportionally to
the data count rank of each class. This technique enables the
adapter to effectively utilize the degree of imbalance as an
input, circumventing the challenges associated with com-
plex label spaces encountered when using 7 directly.

While training the label shift adapter, we employ the
same optimizer and batch size as those employed for train-
ing the source models. The learning rate is set to le-3 for
all datasets. Moreover, we train the label shift adapter for
{200, 200, 30, 15, 50, 20} epochs.

During inference, the momentum hyperparameter « for
target label distribution estimation is configured to 0.1. For
learnable parameters in the test-time adaptation process,
we only update affine parameters in normalization layers
by following TENT [46] and IABN [11]. Unlike TENT,
we freeze the top layers and update the affine parameters

of the layer in the remaining shallow layers, inspired by
previous work [7, 36]. Specifically, for ResNet, including
four layer groups (layer 1, 2, 3, 4), we only freeze layer4
in CIFAR-10-C, CIFAR-100-C, and ImageNet-C. In other
datasets, there is no significant difference in performance,
so all affine parameters are trained. When estimating the
label distribution on ImageNet-C, we utilize only the top-
3 probability to update the estimated label distribution V.
Empirically, we discovered that it is effective to consider
only top-k when the number of classes is particularly large.

B. Further Analysis on Label Shift Adapter

Ablation Study on Architecture Design. We examine
the model architecture design for the proposed label shift
adapter. The label shift adapter produces four types of out-
puts: v, Br, AW, and Ab. Table 10 presents the ablation
study for each component. Interestingly, even when only
Ab is employed, the performance is quite good. However,
we observed that as the degree of the label shift increases,
the performance of using only Ab declines. Moreover, uti-
lizing 7, and (3, only also yields impressive results, indicat-
ing that appropriately shiting the feature map A is effective
in addressing the label shifts. We choose the architecture
design of the label shift adapter that achieves the best aver-
age accuracy, indicating that the final model generally per-
forms well across a variety of label distributions.

T-SNE Visualization. To further substantiate the effective-
ness of our method, we visualize the feature map h using
t-SNE by extracting h during test-time adaptation. As illus-
trated in Fig. 7, our method shows a more well-separated
representation space in a class-wise manner compared to
TENT. Notably, it is evident that the minority classes (e.g.,
horse and truck) are not well divided in the representation
space of TENT. In contrast, our method integrating into
TABN layers enhances class-discriminability.

Ablation Study on Source Model. In the main manuscript,
we employ the balanced softmax to reduce the model bias
towards the majority classes. To further validate the effec-
tiveness of the proposed method, we apply our method to
several source pre-trained models utilizing different train-
ing strategies. We employ three types of techniques: (i)
Cross-entropy loss, (ii) Balanced sampling, (iii) Classifier
re-training [18], where the feature extractor is trained us-
ing cross-entropy loss, and then the classifier is randomly
re-initialized and re-trained using class-balanced sampling.
Table 11 demonstrates that our method effectively handles
the label shifts, regardless of the source pre-trained models.
Moreover, these results indicate that existing long-tailed
recognition methods can be combined with our method to
further reduce the model bias towards the majority classes
in source domain data.

Ablation Study on 7. As described in the main manuscript,
we sampled three kinds of label distributions for 7 during



Num.| F50 F25 F10 U B10 B25 B50 Avg.

3 [52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

5 5091 48.82 45.41 36.90 29.28 26.37 25.51 37.60

7 |51.13 48.99 45.52 36.96 29.24 26.25 25.45 37.64

oo [51.62 49.36 45.85 37.09 29.12 26.06 25.03 37.73
Table 12. Ablation study on the number of 7 for training label shift
adapter using CIFAR-100-C. Num. denotes the number of 7 for
training the adapter. F, U, and B indicate forward, uniform, and
backward distributions, respectively. We chose three label distri-
butions.

‘DELTA ISFDA  TENT+Ours

VISDA-C | 50.10  61.02 72.97

Table 13. Comparison with additional baselines in test-time adap-
tation setting.

| Method | F50 F25 FI10 U B10 B25 B50 Avg.

SAR+GN
SAR+BN
Ours+IABN

57.22 5720 57.07 57.12 61.84 63.06 64.37 59.70
78.63 76.28 71.82 53.28 34.99 28.60 25.18 52.68
80.58 78.62 75.26 63.34 68.54 70.07 71.64 72.58

9.09 959 10.23 14.05 18.93 2046 21.70 14.86
CIFAR100| SAR+BN | 49.44 47.04 43.39 32.18 20.22 16.24 13.96 31.78
Ours+IABN| 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

Table 14. Comparison with SAR using CIFAR-10-C and CIFAR-
100-C in TTA setting. F, U, and B denote forward, uniform, and
backward, respectively. GN and BN indicate group and batch nor-
malization, respectively.

CIFARI10

SAR+GN

training label shift adapter. Regarding the effect of sam-
pling different numbers of 7, Table 12 indicates that such
variations have negligible impact on performance. Specif-
ically, in this experiment, we interpolate three distributions
(i.e., s, u, W) and 7 to train the label shift adapter when
different numbers of 7 are utilized.

C. Additional Experiments

Comparison with Baselines Related to Label Shifts.
We’ve compared two baselines in Table 7, which have the
capability of handling label shifts. We compare additional
baselines, DELTA [53] and ISFDA [22], which address co-
variate and label shifts simultaneously. Although ISFDA
requires several epochs for adapting the source models,
we conduct the experiments in the test-time adaptation set-
ting for a fair comparison. Table 13 demonstrates that our
method is superior to baselines significantly in the VISDA-
C dataset. ISFDA, a domain adaptation model, exhibits lim-
itations in its suitability for online learning during inference.
Since DELTA only focuses on class imbalances in the tar-
get domain, it lacks the ability to handle imbalances in the
source domain. In contrast, our method successfully ad-
dresses the imbalance in both source and target domains in
the test-time adaptation setting.

Comparison with Recent TTA Baseline. We compare
recent test-time adaptation baseline, sharpness-aware and

reliable entropy minimization (SAR) [36]. SAR proposes
an optimizer and analyzes normalization layers to resolve
imbalances in the target domain. However, it is impor-
tant to note that our work addresses imbalances in both
the source and target domains. Table 14 demonstrates that
our method outperforms both SAR+GN and SAR+BN sig-
nificantly. Moreover, it is a viable option to integrate our
method with SAR method.

D. Domain-wise Results

Table 15, 16, 17 show the average classification accuracy
on CIFAR-10-C, CIFAR-100-C, and ImageNet-C, shown
per domain. To compute the accuracy of each domain,
we calculate the average performances of Forward50, For-
ward25, Forward10, Uniform, Backward10, Backward?25,
and Backward50, as described in the main manuscript.
These results demonstrate that our method consistently en-
hances performance across various domains.



s FEN
-3 & 3 I S 7 o 2
g o 35 S & § g 2 s S & S N €]
5 s I § & § S S 3 % 2 § g £ &
Method <] 5 & g <) 5 N = & € q ¥] g & S Avg
Source 23.06 2694 1959 46.89 41.06 4563 4942 5830 4531 4572 69.85 2123 5760 60.14 6545 4508
BN Stats 49.18 50.52 46.29 58.11 4505 56.14 5596 5232 50.65 53.60 59.11 5493 51.63 54.15 5212 52.65
ONDA 50.70 51.66 47.68 59.80 4649 5745 57778 53.81 5236 55.14 6152 5476 53.60 5649 54.19 5423
PseudoLabel 46.87 48.76 4447 5596 4387 53.89 5346 4996 4870 5091 56.34 52.57 4929 51.88 50.16 50.47
LAME 1797 2275 1543 4474 4036 4240 47.08 6130 48.62 4520 67.84 20.33 5540 61.36 64.59 43.69
CoTTA 51.69 53.11 5031 5580 47.28 5431 5488 5260 52.18 5281 5830 49.66 52.12 5532 5439 5298
NOTE 5448 56.22 5324 68.20 48.64 6487 6509 6556 6443 6408 7333 67.59 6024 6695 6726 62.68
TENT 46.41 4829 4338 53.82 4242 5222 5157 4892 4751 49.81 5506 50.62 4790 50.58 4920 49.18
+ Ours 51.66 53.55 48.66 60.74 4694 58.77 5737 55.04 5348 56.00 62.05 57.68 54.11 5748 55.07 5524
IABN 5477 56.48 5325 68.24 4839 6453 6489 6563 6444 6460 7379 6724 6032 6781 67.17 62.77
+ Ours 68.72 6954 6494 7748 61.47 7624 7552 72.06 72.83 7453 79.69 79.08 69.66 74.25 72.69 72.58
Table 15. Domain-wise results on CIFAR-10-C.
5 o I~ ] -é(f g &
g < 3 $ S s 2 - S g $  F o
g S Y 5 5 S S S S % S0 § & L &
Method <] s § 49 & I N s & € S g & & A
Source 1442 1645 9.08 22.55 23.14 2565 25.82 2737 2298 18.57 34.51 584 33.03 1747 36.19 2221
BN Stats 27.59 28.51 2620 36.89 28.61 3453 3644 2940 28.81 2898 36.66 29.22 3337 3378 32.18 3141
ONDA 27.53 28.77 26.17 36.85 29.07 3437 3691 2971 29.09 2938 3697 27.77 33.89 34.00 33.00 31.57
PseudoLabel 27.44 28.54 2559 3492 27778 32.83 3456 2858 2740 2858 3496 26.01 3158 32.80 3138 30.20
LAME 1341 1573 7.66 2093 2230 2479 2463 2721 2239 17.07 33.62 448 3241 15.62 35.66 21.19
CoTTA 30.01 30.85 2845 3477 30.64 3404 3564 3092 30.10 2865 36.09 2430 33.54 3558 34.00 31.84
NOTE 2417 25.64 18.62 3573 28.08 36.89 3748 3491 3395 29.13 4147 3393 36.29 32.01 36.13 32.30
TENT 27.50 28.49 2528 3398 2689 32.12 3336 28.00 26.79 27.78 34.05 2520 31.01 3225 3053 29.55
+ Ours 3095 3221 2877 38.60 30.58 36.06 38.24 3230 30.74 3152 3834 3036 3475 36.19 3486 33.63
IABN 2454 2579 1892 3550 28.00 36.80 37.58 3497 3420 29.02 4139 3399 36.17 32.09 3629 3235
+ Ours 33.65 3437 28.17 41.86 33.62 41.08 41.79 37.82 3836 34.77 4351 4254 39.18 3998 38.76 37.97
Table 16. Domain-wise results on CIFAR-100-C.
-
S q? ~
5 4 IS g 5 3 ) 2
g . 5 s g £ g 2 5 S S g e (@)
g 5 I 9 & 5 IS 3 g & .20 s 3 L I3l
Method < s & Q9 S 5§ N § & £ a S & g g Avg
Source 5.72 5.88 4.82 1548 11.17 1798 18.73 2125 1521 28.04 44.67 28.63 39.16 29.56 3477 21.40
BN Stats 29027 2890 2546 2559 2294 33,14 3291 2837 2515 40.06 4527 40.19 4359 41.84 39.74 3349
ONDA 29.15 28.88 2533 2549 2274 3273 3296 28.18 25.04 40.12 4546 39.69 43.60 42.02 39.72 3341
PseudoLabel 31.25 30.93 29.00 27.72 2580 3436 33.64 3020 2539 4033 44.09 39.56 4278 4143 39.65 3441
LAME 5.56 5.73 4.67 1533 11.03 1792 18.67 21.19 15.16 28.01 44.64 2861 39.12 2949 3475 21.33
CoTTA 3093 3036 2747 2728 2495 3442 3356 3001 2644 40.62 44779 40.58 4332 41.83 40.05 3444
NOTE 31.34 30.83 29.26 27.39 24.66 35.67 32770 3334 2833 3952 4655 4497 43.67 4138 4159 3541
TENT 29029 2894 2584 25.68 2294 32.11 3237 27.17 2350 3943 4394 38.18 4230 40.66 39.02 32.76
+ Ours 3238 3239 2877 29.07 2621 3570 3581 3144 27.86 43.14 4856 43.00 4659 4492 4359 36.63
IABN 3147 30.86 29.28 27.37 24.66 35.69 32777 3335 2837 3954 46.65 45.03 4372 4140 41.60 3545
+ Ours 34.28 34.00 32.18 30.25 27.14 3892 3553 3648 31.58 4250 4995 4835 4693 4495 44.87 38.53

Table 17. Domain-wise results on ImageNet-C.





