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Figure 6. Visualization of label distributions in datasets. (a) shows the illustrations of forward or reversely-unbalanced source (RS)
setting and backward or unbalanced target (UT) setting. In specific, forward and backward are used in CIFAR-10-C, CIFAR-100-C, and
ImageNet-C. In addition, RS and UT are utilized in VisDA-C and OfficeHome. (b) shows the natural label shift of DomainNet.

A. Implementation Details
In this section, we introduce further information regard-

ing the datasets, along with the implementation details for
the baseline test-time-adaptation (TTA) methods and the la-
bel shift adapter.

A.1. Datasets

Fig. 6 illustrates the label distributions for the datasets
utilized in our experiments. As depicted in Fig. 6 (a),
‘forward’ and ‘RS’ represent long-tailed label distributions,
with class order corresponding to the training label distribu-
tion. Conversely, ‘backward’ and ‘UT’ indicate a reversed
class order.

In the forward and backward settings, the imbalance ra-
tios for CIFAR-10-C, CIFAR-100-C, and ImageNet-C are
configured to 10, 25, and 100. We adjust the label distribu-
tion by reducing the number of images per class based on
the specified imbalance ratio. For VisDA-C, The imbalance
ratio is set to 100 for both training and test datasets. Fur-
thermore, we utilize an imbalanced version of OfficeHome
created by the previous research [43].

Fig. 6 (b) shows the label distributions of DomainNet, in
which existing label shifts are significant enough. The su-
perior performance of our method on DomainNet demon-
strates its ability to handle label shifts that arise in real-
world scenarios.

A.2. Details of Baselines

We carry out the experiments using the official imple-
mentations of the baseline models. We provide additional
details regarding the implementation specifics, including

hyperparameters. Note that the batch size for test-time
adaptation is configured to 64 for fair comparisons. For
simplicity, we present the hyperparameters in the following
sequence: {CIFAR-10-C, CIFAR-100-C, ImageNet-C,
VisDA-C, OfficeHome, DomainNet} for test-time adapta-
tion baselines. In instances where hyperparameters are not
separately described for each dataset, the same values are
employed across all datasets.
Source. Different from the previous TTA studies, we em-
ploy long-tailed datasets in our research. To mitigate model
bias towards the majority classes, we utilize a balanced
softmax [39], which is a prominent method for long-tailed
recognition. Formally, the balanced softmax is expressed
as:

Lbal = −
∑

(xi,yi)∼Ds

yi log σ(ŷi + log(πs)),

where πs represents the frequency of the training classes,
and σ denotes the softmax function.

Table 9 describes the hyperparameters utilized for train-
ing on source domain datasets. We select the hyperparam-
eters for VisDA-C, OfficeHome, and DomainNet in accor-
dance with the imbalanced source-free domain adaptation
study [22]. As described in the main manuscript, we utilize
pre-trained ResNet-50 and ResNet-101 on ImageNet, when
conducting the experiments on VisDA-C, OfficeHome, and
DomainNet. Moreover, the learning rate for the feature
extractor and the classifier is set to 0.1×LR and LR, re-
spectively, when training the model on VisDA-C, Office-
Home, and DomainNet. All experiments are conducted us-
ing NVIDIA RTX A5000 GPU.
BN Stats. BN stats [41] utilizes test batch statistics instead
of running statistics within batch normalization layers.
PseudoLabel. In accordance with previous studies [20, 46],



Src Data Tgt Data Model Optim. Scheduler Epoch Batch WD Momentum LR

CIFAR-10-LT CIFAR-10-C ResNet-18 SGD CosineAnneal 200 128 5e-4 0.9 0.1
CIFAR-100-LT CIFAR-100-C ResNet-18 SGD CosineAnneal 200 128 5e-4 0.9 0.1
ImageNet-LT ImageNet-C ResNeXt-50 SGD Manual 90 64 2e-4 0.9 0.1
VisDA-C (RS) VisDA-C (UT) ResNet-101 SGD - 15 40 1e-3 0.9 1e-3

OfficeHome (RS) OfficeHome (UT) ResNet-50 SGD - 50 40 1e-3 0.9 1e-2
DomainNet DomainNet ResNet-50 SGD - 20 40 1e-3 0.9 1e-2

Table 9. Hyperparameters for training the model with source domain data. Src Data and Tgt Data denote source domain and target
domain datasets, respectively. Optim. indicates the optimizer. WD and LR denote the weight decay and learning rate for training. The
manual scheduler for ImageNet-LT is to decay the learning rate at 60 and 80 epochs.

Model Architecture Forward-LT Uni. Backward-LT Avg.
γh βh ∆W ∆b 50 25 10 1 10 25 50

✓ 51.20 49.30 46.06 37.36 27.28 23.75 21.84 36.69
✓ 48.79 42.45 32.10 15.21 22.52 24.09 25.14 30.04

✓ 51.32 49.36 46.11 37.17 27.06 23.56 21.71 36.61
✓ 52.50 50.19 46.64 37.51 28.95 25.56 24.06 37.92

✓ ✓ 52.09 49.48 45.43 35.92 29.60 26.82 26.25 37.94
✓ ✓ 51.93 49.78 46.43 37.18 27.71 24.28 22.57 37.12

✓ ✓ ✓ ✓ 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97
Table 10. Ablation study on architecture design of label shift adapter using CIFAR-100-LT and CIFAR-100-C.

we update the affine parameters in the batch normalization
layers using the hard pseudo labels. The learning rate is set
to {1e-3, 1e-3, 2.5e-4, 5e-5, 5e-5, 1e-3} for each respective
dataset, following the hyperparameters of TENT [46].
ONDA. Online domain adaptation (ONDA) [32] modifies
the batch normalization statistics for target domains using a
batch of target data through an exponential moving average.
We set the update frequency N = 10 and the decay of the
moving average m = 0.1, adhering to the default values of
the original paper.
TENT. Test entropy minimization (TENT) [46] optimizes
the affine parameters of batch normalization layers via en-
tropy minimization. The learning rate is configured to {1e-
3, 1e-3, 2.5e-4, 5e-5, 5e-5, 1e-3} for each dataset. We re-
ferred to the official implementation for hyperparameter se-
lection.
LAME. Laplacian adjusted maximum-likelihood estima-
tion (LAME) [4] alters the output probability of the clas-
sifier. Following the authors’ implementation, we set the
kNN affinity matrix with the value of k as 5.
CoTTA. Continual test-time adaptation (CoTTA) [47]
adapts the model to accommodate continually evolving
target domains by employing a weight-averaged teacher
model, data augmentations, and stochastic restoring.
CoTTA incorporates three hyperparameters: augmentation
confidence threshold pth, restoration factor p, and the decay
of EMA m. p and m are set to 0.01 and 0.999, respectively.
Additionally, pth is configured to { 0.92, 0.72, 0.01, 0.01,
0.01, 0.01 }. Given that the authors do not provide the hy-
perparameters for VisDA-C, OfficeHome, and DomainNet,

Algorithm 1 Training Process of Label Shift Adapter
Require: Dataset Ds = {(xi, yi)}ni=1. A pre-trained

model f . A label shift adapter Gϕ.
1: Initialize the parameters ϕ randomly
2: for k = 1 to K do
3: B ← SampleMiniBatch(D,m)

▷ a mini-batch of m examples
4: π, τ ← Sample({πs, u, π̄s}, {τπs

, τu, τπ̄s
})

▷ sample τ matching π
5: L(Gϕ)← 1

m

∑
(x,y)∈B Lgla((x, y, π); f,Gϕ)

6: Gϕ ← Gϕ − η∇θL(Gϕ) ▷ one SGD step
7: end for

we fine-tune the appropriate hyperparameters for them.

NOTE. Non-i.i.d. test-time adaptation (NOTE) [11] com-
prises two components: (i) Instance-aware batch normal-
ization (IABN), and (ii) Prediction-balanced reservoir sam-
pling (PBRS). In accordance with the original paper, we
substitute the batch normalization layers with IABN layers
before pre-training the source models. Two hyperparame-
ters are associated with IABN: soft-shrinkage width α and
EMA momentum m. The values of α are configured as {
4, 4, 8, 8, 8, 8 }, while m is set to { 0.01, 0.01, 0.1, 0.1,
0.1, 0.1 }. The memory size of PBRS is set to 64, equal to
the batch size. In our experiments, we incorporate our label
shift adapter into the models using IABN layers.



Figure 7. T-SNE visualizations of (a) TENT and (b) IABN+Ours. We visualize the feature map h obtained from the Gaussian noise
corruption in the CIFAR-10-C uniform test dataset. The number of training samples is large in the order of the classes in the legend.

Src Method TTA Method Forward-LT Uni. Backward-LT Avg.
50 25 10 1 10 25 50

Cross
Entropy

Source 40.20 37.26 33.18 22.20 12.19 8.95 7.24 23.03

BN Stats 48.12 45.44 40.17 26.17 13.67 9.69 7.80 27.30
ONDA 48.49 45.80 41.16 27.66 15.17 11.02 8.98 28.33
PseudoLabel 48.76 45.26 39.09 19.84 11.32 8.19 6.44 25.56
TENT 49.17 45.21 38.42 15.32 9.99 7.44 5.67 24.46
LAME 38.17 35.17 31.22 20.44 11.02 7.93 6.30 21.46
CoTTA 32.83 29.35 25.72 14.75 7.38 4.94 3.67 16.95
NOTE 46.41 44.10 40.49 29.30 15.77 11.87 9.84 28.26

IABN 46.43 43.92 39.80 25.35 14.71 11.13 9.27 27.23
+Ours 53.20 50.77 46.26 32.34 18.56 14.07 11.74 32.42

Balanced
Sampling

Source 34.88 32.54 29.12 20.29 11.80 9.09 7.51 20.75

BN Stats 45.07 42.93 39.10 28.67 17.82 13.97 11.88 28.49
ONDA 44.79 42.60 39.01 29.20 18.62 14.65 12.70 28.80
PseudoLabel 47.08 44.66 40.45 26.98 17.31 13.59 11.23 28.76
TENT 48.28 45.64 41.07 24.04 16.88 13.50 11.30 28.67
LAME 32.88 30.44 27.08 18.48 10.48 7.89 6.39 19.09
CoTTA 30.38 28.68 25.58 17.32 10.74 7.96 6.49 18.16
NOTE 46.62 44.27 40.64 30.42 16.99 12.77 10.32 28.86

IABN 46.85 44.29 40.40 27.20 16.12 12.05 9.88 28.12
+Ours 51.32 49.18 44.99 31.92 19.64 15.11 13.00 32.16

Classifier
Re-Training

Source 40.17 37.47 33.59 23.23 13.42 10.18 8.51 23.80

BN Stats 48.33 45.60 40.82 27.49 15.13 11.16 9.11 28.23
ONDA 48.33 45.77 41.57 28.96 16.78 12.50 10.63 29.22
PseudoLabel 49.10 45.89 40.19 21.01 12.74 9.50 7.66 26.58
TENT 49.70 46.19 39.79 16.59 11.28 8.93 6.92 25.63
LAME 38.22 35.41 31.60 21.48 12.28 9.13 7.52 22.23
CoTTA 31.93 29.23 25.91 15.26 8.18 5.55 4.33 17.20
NOTE 45.96 44.04 41.14 31.68 18.52 14.66 12.67 29.81

IABN 46.11 44.04 40.53 27.61 17.28 13.71 11.94 28.75
+Ours 53.11 50.86 46.66 34.04 20.77 16.41 14.12 33.71

Table 11. Ablation study on the source pre-trained model using CIFAR-100-LT and CIFAR-100-C.



A.3. Details of Label Shift Adapter

Model Architecture. We utilize the same model archi-
tecture for the label shift adapter across all datasets. The
proposed label shift adapter consists of two fully-connected
(FC) layers and a ReLU activation function, structured as
FC-ReLU-FC. Furthermore, the label shift adapter is par-
titioned into two neural networks producing (γh, βh) and
(∆W , ∆b). As described in the main manuscript, the label
shift adapter takes m⊺π ∈ R1 and produces (γh, βh) and
(∆W , ∆b) in each respective neural network. The hidden
layer size in the label shift adapter is configured to 100.
Details of Label Shift Adapter. We provide the algo-
rithm of the training process for the label shift adapter as
a pseudo-code in Algorithm 1. The primary objective of
the label shift adapter is to learn the relationship between
π and adaptive parameters by selecting appropriate τ based
on sampled π within generalized logit adjusted loss [33, 1]
function. Increasing τ results in decision boundary shift-
ing away from the minority class towards the majority class.
Consequently, instead of sampling batches differently based
on π, we sample π and τ iteratively, as described in Algo-
rithm 1. This enables the label shift adapter to optimize
its parameters in accordance with input label distributions
(e.g., π and Ŷt), thereby producing suitable parameter ad-
justments.

During the training of the label shift adapter, we sam-
ple the label distribution π from three types of label dis-
tributions: {πs, u, π̄s}. For each sampled label distri-
bution, we select the appropriate τ ⊂ {τπs , τu, τπ̄s},
with the hyperparameter τ corresponding to each π. Dif-
ferent τ values are employed for each dataset. We
set τ to {1,−1.5, 3}, {1, 0,−2}, {1, 0,−2}, {1, 0,−2},
{1,−1,−3}, and {1, 0,−2}, for CIFAR-10-LT, CIFAR-
100-LT, ImageNet-LT, VisDA-C, OfficeHome, and Do-
mainNet, respectively.

The mapping vector m maps the label distribution’s vec-
tor to the scalar of the imbalance degree. We set the range of
m from -1 to 1, with the values increasing proportionally to
the data count rank of each class. This technique enables the
adapter to effectively utilize the degree of imbalance as an
input, circumventing the challenges associated with com-
plex label spaces encountered when using π directly.

While training the label shift adapter, we employ the
same optimizer and batch size as those employed for train-
ing the source models. The learning rate is set to 1e-3 for
all datasets. Moreover, we train the label shift adapter for
{200, 200, 30, 15, 50, 20} epochs.

During inference, the momentum hyperparameter α for
target label distribution estimation is configured to 0.1. For
learnable parameters in the test-time adaptation process,
we only update affine parameters in normalization layers
by following TENT [46] and IABN [11]. Unlike TENT,
we freeze the top layers and update the affine parameters

of the layer in the remaining shallow layers, inspired by
previous work [7, 36]. Specifically, for ResNet, including
four layer groups (layer 1, 2, 3, 4), we only freeze layer4
in CIFAR-10-C, CIFAR-100-C, and ImageNet-C. In other
datasets, there is no significant difference in performance,
so all affine parameters are trained. When estimating the
label distribution on ImageNet-C, we utilize only the top-
3 probability to update the estimated label distribution Ŷt.
Empirically, we discovered that it is effective to consider
only top-k when the number of classes is particularly large.

B. Further Analysis on Label Shift Adapter
Ablation Study on Architecture Design. We examine
the model architecture design for the proposed label shift
adapter. The label shift adapter produces four types of out-
puts: γh, βh, ∆W , and ∆b. Table 10 presents the ablation
study for each component. Interestingly, even when only
∆b is employed, the performance is quite good. However,
we observed that as the degree of the label shift increases,
the performance of using only ∆b declines. Moreover, uti-
lizing γh and βh only also yields impressive results, indicat-
ing that appropriately shiting the feature map h is effective
in addressing the label shifts. We choose the architecture
design of the label shift adapter that achieves the best aver-
age accuracy, indicating that the final model generally per-
forms well across a variety of label distributions.
T-SNE Visualization. To further substantiate the effective-
ness of our method, we visualize the feature map h using
t-SNE by extracting h during test-time adaptation. As illus-
trated in Fig. 7, our method shows a more well-separated
representation space in a class-wise manner compared to
TENT. Notably, it is evident that the minority classes (e.g.,
horse and truck) are not well divided in the representation
space of TENT. In contrast, our method integrating into
IABN layers enhances class-discriminability.
Ablation Study on Source Model. In the main manuscript,
we employ the balanced softmax to reduce the model bias
towards the majority classes. To further validate the effec-
tiveness of the proposed method, we apply our method to
several source pre-trained models utilizing different train-
ing strategies. We employ three types of techniques: (i)
Cross-entropy loss, (ii) Balanced sampling, (iii) Classifier
re-training [18], where the feature extractor is trained us-
ing cross-entropy loss, and then the classifier is randomly
re-initialized and re-trained using class-balanced sampling.
Table 11 demonstrates that our method effectively handles
the label shifts, regardless of the source pre-trained models.
Moreover, these results indicate that existing long-tailed
recognition methods can be combined with our method to
further reduce the model bias towards the majority classes
in source domain data.
Ablation Study on π. As described in the main manuscript,
we sampled three kinds of label distributions for π during



Num. F50 F25 F10 U B10 B25 B50 Avg.

3 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97
5 50.91 48.82 45.41 36.90 29.28 26.37 25.51 37.60
7 51.13 48.99 45.52 36.96 29.24 26.25 25.45 37.64
∞ 51.62 49.36 45.85 37.09 29.12 26.06 25.03 37.73

Table 12. Ablation study on the number of π for training label shift
adapter using CIFAR-100-C. Num. denotes the number of π for
training the adapter. F, U, and B indicate forward, uniform, and
backward distributions, respectively. We chose three label distri-
butions.

DELTA ISFDA TENT+Ours

VISDA-C 50.10 61.02 72.97
Table 13. Comparison with additional baselines in test-time adap-
tation setting.

Method F50 F25 F10 U B10 B25 B50 Avg.

CIFAR10
SAR+GN 57.22 57.20 57.07 57.12 61.84 63.06 64.37 59.70
SAR+BN 78.63 76.28 71.82 53.28 34.99 28.60 25.18 52.68

Ours+IABN 80.58 78.62 75.26 63.34 68.54 70.07 71.64 72.58

CIFAR100
SAR+GN 9.09 9.59 10.23 14.05 18.93 20.46 21.70 14.86
SAR+BN 49.44 47.04 43.39 32.18 20.22 16.24 13.96 31.78

Ours+IABN 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

Table 14. Comparison with SAR using CIFAR-10-C and CIFAR-
100-C in TTA setting. F, U, and B denote forward, uniform, and
backward, respectively. GN and BN indicate group and batch nor-
malization, respectively.

training label shift adapter. Regarding the effect of sam-
pling different numbers of π, Table 12 indicates that such
variations have negligible impact on performance. Specif-
ically, in this experiment, we interpolate three distributions
(i.e., πs, u, π̄s) and τ to train the label shift adapter when
different numbers of π are utilized.

C. Additional Experiments

Comparison with Baselines Related to Label Shifts.
We’ve compared two baselines in Table 7, which have the
capability of handling label shifts. We compare additional
baselines, DELTA [53] and ISFDA [22], which address co-
variate and label shifts simultaneously. Although ISFDA
requires several epochs for adapting the source models,
we conduct the experiments in the test-time adaptation set-
ting for a fair comparison. Table 13 demonstrates that our
method is superior to baselines significantly in the VISDA-
C dataset. ISFDA, a domain adaptation model, exhibits lim-
itations in its suitability for online learning during inference.
Since DELTA only focuses on class imbalances in the tar-
get domain, it lacks the ability to handle imbalances in the
source domain. In contrast, our method successfully ad-
dresses the imbalance in both source and target domains in
the test-time adaptation setting.
Comparison with Recent TTA Baseline. We compare
recent test-time adaptation baseline, sharpness-aware and

reliable entropy minimization (SAR) [36]. SAR proposes
an optimizer and analyzes normalization layers to resolve
imbalances in the target domain. However, it is impor-
tant to note that our work addresses imbalances in both
the source and target domains. Table 14 demonstrates that
our method outperforms both SAR+GN and SAR+BN sig-
nificantly. Moreover, it is a viable option to integrate our
method with SAR method.

D. Domain-wise Results
Table 15, 16, 17 show the average classification accuracy

on CIFAR-10-C, CIFAR-100-C, and ImageNet-C, shown
per domain. To compute the accuracy of each domain,
we calculate the average performances of Forward50, For-
ward25, Forward10, Uniform, Backward10, Backward25,
and Backward50, as described in the main manuscript.
These results demonstrate that our method consistently en-
hances performance across various domains.
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Source 23.06 26.94 19.59 46.89 41.06 45.63 49.42 58.30 45.31 45.72 69.85 21.23 57.60 60.14 65.45 45.08

BN Stats 49.18 50.52 46.29 58.11 45.05 56.14 55.96 52.32 50.65 53.60 59.11 54.93 51.63 54.15 52.12 52.65
ONDA 50.70 51.66 47.68 59.80 46.49 57.45 57.78 53.81 52.36 55.14 61.52 54.76 53.60 56.49 54.19 54.23
PseudoLabel 46.87 48.76 44.47 55.96 43.87 53.89 53.46 49.96 48.70 50.91 56.34 52.57 49.29 51.88 50.16 50.47
LAME 17.97 22.75 15.43 44.74 40.36 42.40 47.08 61.30 48.62 45.20 67.84 20.33 55.40 61.36 64.59 43.69
CoTTA 51.69 53.11 50.31 55.80 47.28 54.31 54.88 52.60 52.18 52.81 58.30 49.66 52.12 55.32 54.39 52.98
NOTE 54.48 56.22 53.24 68.20 48.64 64.87 65.09 65.56 64.43 64.08 73.33 67.59 60.24 66.95 67.26 62.68

TENT 46.41 48.29 43.38 53.82 42.42 52.22 51.57 48.92 47.51 49.81 55.06 50.62 47.90 50.58 49.20 49.18
+ Ours 51.66 53.55 48.66 60.74 46.94 58.77 57.37 55.04 53.48 56.00 62.05 57.68 54.11 57.48 55.07 55.24

IABN 54.77 56.48 53.25 68.24 48.39 64.53 64.89 65.63 64.44 64.60 73.79 67.24 60.32 67.81 67.17 62.77
+ Ours 68.72 69.54 64.94 77.48 61.47 76.24 75.52 72.06 72.83 74.53 79.69 79.08 69.66 74.25 72.69 72.58

Table 15. Domain-wise results on CIFAR-10-C.
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Source 14.42 16.45 9.08 22.55 23.14 25.65 25.82 27.37 22.98 18.57 34.51 5.84 33.03 17.47 36.19 22.21

BN Stats 27.59 28.51 26.20 36.89 28.61 34.53 36.44 29.40 28.81 28.98 36.66 29.22 33.37 33.78 32.18 31.41
ONDA 27.53 28.77 26.17 36.85 29.07 34.37 36.91 29.71 29.09 29.38 36.97 27.77 33.89 34.00 33.00 31.57
PseudoLabel 27.44 28.54 25.59 34.92 27.78 32.83 34.56 28.58 27.40 28.58 34.96 26.01 31.58 32.86 31.38 30.20
LAME 13.41 15.73 7.66 20.93 22.30 24.79 24.63 27.21 22.39 17.07 33.62 4.48 32.41 15.62 35.66 21.19
CoTTA 30.01 30.85 28.45 34.77 30.64 34.04 35.64 30.92 30.10 28.65 36.09 24.30 33.54 35.58 34.00 31.84
NOTE 24.17 25.64 18.62 35.73 28.08 36.89 37.48 34.91 33.95 29.13 41.47 33.93 36.29 32.01 36.13 32.30

TENT 27.50 28.49 25.28 33.98 26.89 32.12 33.36 28.00 26.79 27.78 34.05 25.20 31.01 32.25 30.53 29.55
+ Ours 30.95 32.21 28.77 38.60 30.58 36.06 38.24 32.30 30.74 31.52 38.34 30.36 34.75 36.19 34.86 33.63

IABN 24.54 25.79 18.92 35.50 28.00 36.80 37.58 34.97 34.20 29.02 41.39 33.99 36.17 32.09 36.29 32.35
+ Ours 33.65 34.37 28.17 41.86 33.62 41.08 41.79 37.82 38.36 34.77 43.51 42.54 39.18 39.98 38.76 37.97

Table 16. Domain-wise results on CIFAR-100-C.
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Source 5.72 5.88 4.82 15.48 11.17 17.98 18.73 21.25 15.21 28.04 44.67 28.63 39.16 29.56 34.77 21.40

BN Stats 29.27 28.90 25.46 25.59 22.94 33.14 32.91 28.37 25.15 40.06 45.27 40.19 43.59 41.84 39.74 33.49
ONDA 29.15 28.88 25.33 25.49 22.74 32.73 32.96 28.18 25.04 40.12 45.46 39.69 43.60 42.02 39.72 33.41
PseudoLabel 31.25 30.93 29.00 27.72 25.80 34.36 33.64 30.20 25.39 40.33 44.09 39.56 42.78 41.43 39.65 34.41
LAME 5.56 5.73 4.67 15.33 11.03 17.92 18.67 21.19 15.16 28.01 44.64 28.61 39.12 29.49 34.75 21.33
CoTTA 30.93 30.36 27.47 27.28 24.95 34.42 33.56 30.01 26.44 40.62 44.79 40.58 43.32 41.83 40.05 34.44
NOTE 31.34 30.83 29.26 27.39 24.66 35.67 32.70 33.34 28.33 39.52 46.55 44.97 43.67 41.38 41.59 35.41

TENT 29.29 28.94 25.84 25.68 22.94 32.11 32.37 27.17 23.50 39.43 43.94 38.18 42.30 40.66 39.02 32.76
+ Ours 32.38 32.39 28.77 29.07 26.21 35.70 35.81 31.44 27.86 43.14 48.56 43.00 46.59 44.92 43.59 36.63

IABN 31.47 30.86 29.28 27.37 24.66 35.69 32.77 33.35 28.37 39.54 46.65 45.03 43.72 41.40 41.60 35.45
+ Ours 34.28 34.00 32.18 30.25 27.14 38.92 35.53 36.48 31.58 42.50 49.95 48.35 46.93 44.95 44.87 38.53

Table 17. Domain-wise results on ImageNet-C.




