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A.1. Derivation of the Gaussian-categorical diffusion process

In the following section, we provide detailed explanation of diffusion models including the categorical
diffusion and the Gaussian-categorical diffusion.

A.1.1. Categorical diffusion process
In this section, our final goal is to derive the posterior q (yt−1 |yt,y0) of the categorical diffusion,

given the forward noising process. The forward process of the categorical diffusion process is defined
as follows:

∀t ∈ [1, 2, . . . T ], αt := 1− βt, (1)
q (yt |yt−1) := C(yt; (1− βt)yt−1 + βt/K), (2)

yt ∈ {1, 2, ..., K}M ⊂ RM , 1[yt] ∈ RM×K , (3)

where βt is the noise schedule for each timestep, K is the number of categories in the categorical distri-
bution, and M is the number of categorical variables. 1[yt] is the one-hot form of yt.

We will first prove q (yt |y0) = C(yt; ᾱty0 + (1− ᾱt)/K) through mathematical induction. The base
case t = 1 is evident though Equation (2) and let us assume the inductive case for t− 1 where

q (yt−1 |y0) := C(yt−1; ᾱt−11[y0] + (1− ᾱt−1)/K) where ᾱt :=
t∏

s=1

αs. (4)

Then we can derive q (yt |y0) as follows:

q (yt |y0) =
∑
yt−1

q (yt |yt−1,y0) q (yt−1 |y0) (5)

=
∑
yt−1

q (yt |yt−1) q (yt−1 |y0) (6)

=
∑
yt−1

[αt1[yt−1] + (1− αt)/K]yt
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

(7)

=
∑
yt−1

[αt1[yt] + (1− αt)/K]yt−1
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

. (8)

where [Θ]yt denotes the probability of event yt in the categorical distribution parameterized with Θ. By
rewriting the summation as an inner product, we obtain

q (yt |y0) = [αt1[yt] + (1− αt)/K] · [ᾱt−11[y0] + (1− ᾱt−1)/K] (9)
= ᾱt1[yt] · 1[y0] + (1− αt)ᾱt−1/K + (1− ᾱt−1)αt−1/K + (1− αt)(1− ᾱt−1)/K (10)
= ᾱt1[yt] · 1[y0] + (1− ᾱt)/K (11)
= C(yt; ᾱt1[y0] + (1− ᾱt)/K), (12)

which is the t case of Equation (2). Through mathematical induction, we can conclude that q (yt |y0) =
C(yt; ᾱt1[y0] + (1− ᾱt)/K).



Next, we will derive the posterior q (yt−1 |yt,y0) using Bayes theorem as follows:

q (yt−1 |yt,y0) =
q (yt |yt−1,y0) q (yt−1 |y0)

q (yt |y0)
(13)

=
q (yt |yt−1) q (yt−1 |y0)

q (yt |y0)
(14)

= Z [αt1[yt−1] + (1− αt)/K]yt
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

(15)

= Z [αt1[yt] + (1− αt)/K]yt−1
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

(16)

= C
(
yt−1;Z [αt1[yt] + (1− αt)/K]⊙ [ᾱt−11[y0] + (1− ᾱt−1)/K]

)
. (17)

Thus, the posterior q (yt−1 |yt,y0) is summarized as

q (yt−1 |yt,y0) = C(yt−1; Θ̃t) (18)

Θ̃t := Z[αC
t1[yt] + (1− αC

t)/K]⊙ [ᾱC
t1[y0] + (1− ᾱC

t−1)/K]. (19)

A.1.2. Gaussian-categorical diffusion process
We will derive the posterior q (zt−1 | zt, z0) of the Gaussian-categorical distribution, where the Gaus-

sian distribution defined as follows:

X, Y ∼ NC (x,y;µ,Σ,Θ) , (20)
X = [X1, X2, ..., XN ] ∈ RN ,

Y = [Y1, Y2, ..., YM ] ∈ {1, 2, ..., K}M ,

µ ∈ RS×N ,Σ ∈ RS×N×N ,Θ ∈ RM×K , and S = KM .

NC(x,y;µ,Σ,Θ) =

(
M∏
i=1

Θi ,yi

)
(2π)−

N
2 |Σy|−

1
2 exp

(
− 1

2
(x− µy)

⊤Σ−1
y (x− µy)

)
. (21)

and the forward noising process for the Gaussian-categorical diffusion is defined as

∀t ∈ [1, 2, . . . , T ], αN
t := 1− βN

t , αC
t := 1− βC

t , and zt := (xt,yt), (22)

q (zt | zt−1) := NC
(
zt;
[√

1− βN
t xt−1

]
×S

,
[
βN
t I
]
×S

, (1− βC
t)1[yt−1] + βC

t/K
)
. (23)

We will first prove that q (zt | z0) = NC
(
zt;
[√

ᾱN
t x0

]
×S

,
[
(1 − ᾱN

t )I
]
×S

, (1 − ᾱC
t)1[y0] + ᾱC

t/K
)

where ᾱt :=
∏t

s=1 αs. We will prove this using mathematical induction, where the base case t = 1 is
defined in Equation (23). Let us assume the inductive case for t− 1,

q (zt−1 | z0) = NC
(
zt−1;

[√
ᾱN
t−1x0

]
×S

,
[
(1− ᾱN

t−1)I
]
×S

, (1− ᾱC
t−1)1[y0] + ᾱC

t−1/K
)
. (24)



Then we can derive q (zt | z0) as follows:

q (zt | z0) (25)

=

∫
q (zt | zt−1, z0) q (zt−1 | z0) dzt−1 (26)

=

∫
q (zt | zt−1) q (zt−1 | z0) dzt−1 (27)

=
∑
yt−1

∫
NC(zt;

[
µt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1) · NC(zt−1;
[
µt−1|0

]
×S

,
[
Σt−1|0

]
×S

,Θt−1|0)dxt−1,

(28)

where Θi|j := (1 − βC
i )1[yj] + βC

i/K, and [v]×S indicates row-wise duplication of a vector v (i.e.,
[v,v, ...,v]T ). By decomposing the Gaussian-categorical into a Gaussian distribution and a categorical
distribution, we can write the equation as follows:

q (zt | z0) (29)

=
∑
yt−1

∫ (
C(yt;Θt|t−1) · N (xt;µt|t−1,Σt|t−1)

)
·
(
C(yt−1;Θt−1|0) · N (xt−1;µt−1|0,Σt−1|0)

)
dxt−1

(30)

=
∑
yt−1

C(yt;Θt|t−1) · C(yt−1;Θt−1|0)

∫
N (xt;µt|t−1,Σt|t−1) · N (xt−1;µt−1|0,Σt−1|0)dxt−1 (31)

= C(yt; ᾱ
C
t1[y0] + (1− ᾱC

t)/K) · N (xt;
√

ᾱN
t x0, (1− ᾱN

t )I) (32)

= NC
(
zt;
[√

ᾱN
t x0

]
×S

,
[
(1− ᾱN

t )I
]
×S

, (1− ᾱC
t)1[y0] + ᾱC

t/K
)
, (33)

where µi|j :=
√

1− βN
i xj and Σi|j := βN

i I . Through mathematical induction, we can conclude that

q (zt | z0) = NC
(
zt;
[√

ᾱN
t x0

]
×S

,
[
(1− ᾱN

t )I
]
×S

, (1− ᾱC
t)1[y0] + ᾱC

t/K
)

.

Next, we will derive the posterior q (zt−1 | zt, z0) using Bayes theorem,

q (zt−1 | zt, z0) =
q (zt | zt−1, z0) q (zt−1 | z0)

q (zt | z0)
(34)

=
q (zt | zt−1) q (zt−1 | z0)

q (zt | z0)
(35)

=
NC(zt;

[
µt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1) · NC(zt−1;
[
µt−1|0

]
×S

,
[
Σt−1|0

]
×S

,Θt−1|0)

NC(zt;
[
µt|0
]
×S

,
[
Σt|0

]
×S

,Θt|0)
.

(36)

We again decompose the Gaussian-categorical diffusion into a Gaussian distribution and a categorical



distribution

q (zt−1 | zt, z0) (37)

=

(
C(yt;Θt|t−1) · N (xt;µt|t−1,Σt|t−1)

)
·
(
C(yt−1;Θt−1|0) · N (xt−1;µt−1|0,Σt−1|0)

)
C(yt;Θt|0) · N (xt;µt|0,Σt|0)

(38)

=
C(yt;Θt|t−1) · C(yt−1;Θt−1|0)

C(yt;Θt|0)
·
N (xt;µt|t−1,Σt|t−1) · N (xt−1;µt−1|0,Σt−1|0)

N (xt;µt|0,Σt|0)
(39)

= C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) (40)

= NC(zt−1;
[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t), (41)

µ̃t :=

√
ᾱN
t−1β

N
t

1− ᾱN
t

x0 +

√
αN
t (1− ᾱN

t−1)

1− ᾱN
t

xt, (42)

Σ̃t :=
(
(1− ᾱN

t−1)β
N
t /(1− ᾱN

t )
)
I, (43)

Θ̃t := Z[αC
t1[yt] + (1− αC

t)/K]⊙ [ᾱC
t1[y0] + (1− ᾱC

t−1)/K], (44)

The posterior distribution q (zt−1 | zt, z0) can be summarized as follows:

q (zt−1 | zt, z0) = NC
(
zt−1;

[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t

)
, (45)

where Z is a normalizing constant. We approximate the reverse process by matching µ̃θ(zt), Σ̃θ(zt),
and Θθ(zt).

Finally, minimizing the KL divergence term DKL

(
q (zt−1 | zt, z0) ∥ pθ (zt−1 | zt)

)
can be decomposed



into two separate terms for the Gaussian variable and the categorical variable as follows:

DKL

(
q (zt−1 | zt, z0) ∥ pθ (zt−1 | zt)

)
(46)

=

∫
q (zt−1 | zt, z0) log

q (zt−1 | zt, z0)
pθ (zt−1 | zt)

dzt−1 (47)

=

∫
NC(zt−1;

[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t) log
NC(zt−1;

[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t)

NC(zt−1;
[
µ̃θ(zt)

]
×S

,
[
Σ̃θ(zt)

]
×S

,Θθ(zt))
dzt−1 (48)

=

∫
C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) log

C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t)

C(yt−1;Θθ(zt)) · N (xt−1; µ̃θ(zt), Σ̃θ(zt))
dzt−1 (49)

=

∫
C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) log

C(yt−1; Θ̃t)

C(yt−1;Θθ(zt))
dzt−1

+

∫
C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) log

N (xt−1; µ̃t, Σ̃t)

N (xt−1; µ̃θ(zt), Σ̃θ(zt))
dzt−1 (50)

=

∫
C(yt−1; Θ̃t) · log

C(yt−1; Θ̃t)

C(yt−1;Θθ(zt))
dyt−1

+

∫
N (xt−1; µ̃t, Σ̃t) log

N (xt−1; µ̃t, Σ̃t)

N (xt−1; µ̃θ(zt), Σ̃θ(zt))
dxt−1 (51)

= DKL(C(yt−1; Θ̃t) ∥ C(yt−1;Θθ(zt))) +DKL(N (xt−1; µ̃t, Σ̃t) ∥ N (xt−1; µ̃θ(zt), Σ̃θ(zt))) (52)

= Eq

[ 1

2σ2
t

∥µ̃t − µ̃θ(zt)∥2
]
+DKL(Θ̃t ∥ Θθ(zt)) + C (53)
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Figure A.1. (a) FID-CLIP score pairs for different noise schedules βC . FID and CLIP scores are measured in 128 × 128 resolution. (b)
The illustration of different noise schedules. A larger p indicates stronger noise near t = 1000.

A.2. Noise schedules of the Gaussian-categorical diffusion process
The Gaussian-categorical diffusion process can have different noise schedules for βC and βN as defined

in Equation (23). In order to search for a reasonable noise schedule, we train the Gaussian-categorical
diffusion model on different schedules for βC, relative to the Gaussian noise schedule βN . Specifically,



we fix βN as the cosine noise schedule [14] and set βC as a function of a pth power of βN , in other words
βC := (βN)p, which are plotted in Figure A.1 (b). In Figure A.1, we present the FID-CLIP score of these
results at the 128× 128 resolution on the CelebA-HQ dataset [11]. Overall, choosing p near 1 is a good
choice for achieving text-image correspondence. We leave further analysis on noise scheduling between
different modalities as a future research topic.

Figure A.2. FID-Semantic Recall of the Gaussian-categorical diffusion model compared to the results generated by the Stable Diffusion
model finetuned on Cityscapes [4] (SD-finetuned) and zero-shot text-to-image generation of the pretrained Stable Diffusion (SD-zero-shot).
We use the Stable Diffusion v1.4 for both zero-shot generation and finetuning.

A.3. Comparison with Stable Diffusion
Recently, finetuning a general-purpose text-to-image generation model using domain-specific datasets

has shown great success in generating high-quality images with strong text-image correspondence.
Specifically, the Stable Diffusion project provides a large pretrained Latent Diffusion Model (LDM) [16]
trained on a web-scale dataset, the LAION 5B [17], that is capable of generating artistic images. In this
section, we demonstrate the limitation of finetuning a generative model in cases of significant domain
gaps. We finetune Stable Diffusion v1.4 using the Cityscapes dataset and report the FID-Semantic Recall
pairs in Figure A.2. We also provide zero-shot text-to-image generation results for comparison. While
finetuning stable diffusion can be effective in natural domains such as the MM CelebA-HQ, it should
not be viewed as an all-encompassing solution for addressing issues in text-to-image generation. Neither
finetuning Stable Diffusion nor zero-shot text-to-image generation exhibits a low FID or a high Seman-
tic Recall for generating the urban scenes of Cityscapes [4]. Training a Gaussian-categorical diffusion
model can be an effective approach for generating unique domains such as medical images or aerial
photos.

A.4. Visualizing the domain gaps in CLIP scores
The CLIP score [7] is a reliable measure in most cases for evaluating the quality of text-to-image gen-

eration in natural domains such as the MS COCO [10]. However, in certain cases, the CLIP model [15]
may have poor generalization abilities for specific domains with significant differences from its train-
ing data. Since the train dataset of CLIP is not publicly available for this analysis, we replace it with
the MS COCO dataset which contains diverse images of different scenes. As shown in Figure A.3



(a) CLIP feature Visualization (b) FID-CLIP Score in Cityscapes

Figure A.3. (a) Visualization of CLIP features from different datasets using t-SNE. While the CelebA-HQ dataset closely clusters with
several large-scale image datasets such as the ImageNet and MS COCO dataset, urban scene datasets such as Cityscapes or BDD100K
form distinct clusters. (b) CLIP scores display inconsistent trends when measured on the Cityscapes dataset.

(a), we plot the features from the CLIP image encoder [15] for different datasets using the t-SNE vi-
sualization technique [19]. Each point in Figure A.3 (a) represents the averaged CLIP features from a
single dataset. While general image datasets such as the ImageNet [5], ADE20K [22], and the CelebA-
HQ [11] are closely clustered to the MS COCO dataset, other datasets such as the urban scene datasets
(e.g., Cityscapes [4] and BDD100K [3]) or the number datasets (e.g., MNIST [6] and SVHN [13]) form
distinct clusters apart from the MS COCO dataset [10].

This indicates that the Cityscapes dataset may have a domain gap significantly large enough to render
the CLIP score unreliable. As shown in Figure A.3 (b), FID-CLIP score pairs for the Latent Diffusion
Model (LDM) [16] display inconsistent trends of increase and decrease as the guidance scale increases.
Thus, we do not use the CLIP score to evaluate the Cityscapes text-to-image generation and instead use
the Semantic Recall.

A.5. Semantic Recall in Cityscapes
To compensate for the limitations of the CLIP score when evaluating datasets with large domain

gaps, we introduce the Semantic Recall which evaluates the generation of specific semantic categories
specified in the test description. The Semantic Recall is the average ratio of correctly detected classes in
the generated image to the total number of classes in the ground-truth layouts,

Semantic Recall :=
1

| G |
∑

xi,yi∈G

| Classes in F (xi) ∩ Classes in yi |
| Classes in yi |

,

where G is the set of generated image-layout pairs (xi, yi) and | · | indicates the cardinality of a given
set. F (·) is the pretrained semantic segmentation model [20]. We provide full details of the Semantic
Recall for each class in Figure A.4 (b). The Gaussian-categorical diffusion model is especially effective
for generating less frequently encountered classes such as the Motorcycle and Traffic light classes.

In this section, we also report the Semantic F-score as an evaluation measure for the semantic accuracy
of the generated image. The Semantic F-score is similar to the Semantic Recall but uses the F-score,



(a) FID-Semantic Recall (b) Class-wise Semantic Recall

(c) FID-Semantic F-score (d) Class-wise Semantic F-score

Figure A.4. (a) FID-Semantic Recall for the Cityscapes dataset and (b) detailed class-wise Semantic Recall. (c) FID-Semantic F-score for
the Cityscapes dataset and (c) detailed class-wise Semantic Recall. Classes are sorted from the most occurring classes (left) to the least
occurring (right). The Gaussian-categorical diffusion model outperforms existing baselines by a large margin in the Semantic F-score,
indicating that our approach does not overly generate objects.

which takes both recall and precision into account as:

Semantic F-score :=
2

Semantic Recall−1 + Semantic Precision−1 ,

where Semantic Precision is calculated similarly to the Semantic Recall. While the Semantic Recall
is useful for detecting the existence of certain objects, it may overcompensate for verbose generation.
For instance, a text-to-image generation model that generates all semantic classes regardless of the text
condition may achieve a high recall without understanding the text description. Therefore, we use the
F-score to evaluate whether a text-to-image generation model precisely generates the classes specified
in the text description. The results in Figure A.4 (c) demonstrate that the Gaussian-categorical diffusion
model outperforms existing text-to-image in the Cityscapes [4] dataset, exhibiting a high F-score and a
low FID. This suggests that our model does not overly generate semantic classes regardless of the text
description.

A.6. Quantitative results for cross-modal outpainting
As demonstrated in the main paper, a well-trained Gaussian-categorical diffusion is capable of per-

forming text-guided segmentation and layout-to-image generation. The key idea is to view an image or a



layout as a masked image-layout pair and inpaint the masked modality using the RePaint technique [12].
The detailed algorithm following RePaint [12] is provided in Algorithm 1. We also compare the quan-
titative comparison of the results for segmentation and layout-to-image generation on the CelebA-HQ
dataset [8,11] in Table A.1 and Table A.2. We train a segmentation (i.e., Deeplab v3 [2]) and a layout-to-
image generation model (i.e., OASIS [18]) on the MM CelebA-HQ-25. While the Gaussian-categorical
diffusion does not outperform models dedicated to segmentation or layout-to-image generation, it yields
reasonable quantitative results which suggest that the Gaussian-categorical diffusion can serve as a
generative prior for tasks other than text-to-image generation. Additionally, we find that training the
Gaussian-categorical diffusion with a lower p value leans towards better layout-to-image generation
while a higher p value leads to better segmentation performance. In this manner, extreme values of p
(i.e., p = 0 and p→∞) are equivalent to training a conditional generation model (i.e., layout-to-image
and semantic segmentation).

Algorithm 1 Cross-modal outpainting for conditional generation.
1: zT ∼ NC(x,y; 0, I,Θ)
2: t← T
3: while t > 0 do
4: n← N
5: while n > 0 do
6: zknown

t−1 ∼ NC(zt−1;
[
µt−1|0

]
×S

,
[
Σt−1|0

]
×S

,Θt−1|0) ▷ Apply noise to known area zknown

7: zunknown
t−1 ∼ NC(zt−1;

[
µ̃θ(zt)

]
×S

,
[
Σ̃θ(zt)

]
×S

,Θθ(zt)) ▷ Denoise single step zt

8: zt−1 = m⊙ zknown
t−1 + (1−m)⊙ zunknown

t−1 ▷ Update unknown area

9: if n < N and t > 1 then

10: zt ∼ NC(zt;
[
µt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1) ▷ Resample timestep t
11: end if
12: n← n− 1
13: end while
14: t← t− 1
15: end while

Method mIoU ↑
Deeplab v3 [2] 73.88

Ours p = 0.5 32.52
Ours p = 1.0 51.56
Ours p = 3.0 59.82

Table A.1. Quantitative results for semantic segmentation on
the 25% of the MM CelebAMask-HQ dataset [9]. Segmenta-
tion predictions are generated by resampling noise 5 times for
each timestep (N = 5).

Method FID ↓ mIoU ↑
OASIS [18] 20.64 77.35

Ours p = 0.5 30.45 71.51
Ours p = 1.0 33.25 66.81
Ours p = 3.0 47.89 40.09

Table A.2. Quantitative results for layout-to-image generation
on MM CelebAMask-HQ-25 dataset [9]. mIoU is measured
between the input layout and the segmentation results of the
generated image using a pretrained HRNet [20].

A.7. Ablation study and additional baselines
In this section, we provide results for different text-to-image generation approaches and compare them

against our approach. First, we train a Gaussian diffusion model with an identical architecture as our



model which generates images without the corresponding layouts. The visualization in Figure 8. of
the main paper demonstrate that the internal features of this Gaussian-categorical diffusion model form
distinct clusters compared to the Gaussian diffusion model.

Second, we present a text-to-image generation approach that leverages semantic segmentation labels
during training. Given text inputs, we sequentially generate layouts from texts and then images from
the generated layouts. Specifically, we train a categorical diffusion model [1] for text-to-layout gener-
ation and a layout-to-image synthesis model called SDM [21]. We train a modified version of SDM to
incorporate text conditions to generate image from layouts.

To provide quantitative results, we report the FID-CLIP score pairs for the MM CelebA-HQ-25 in
Figure A.5. Our approach effectively enhances the performance of the Gaussian diffusion model by
simultaneously generating corresponding semantic layouts. Also, our simultaneous generation of images
and layouts outperforms the sequential generation from text to layouts and then to images.

Figure A.5. FID-CLIP scores for the Gaussian diffusion on the MM CelebA-HQ-25 dataset, compared against existing approaches and the
Gaussian-categorical diffusion.

A.8. Qualitative comparison
We provide the qualitative results from existing text-to-image generation models, and the Gaussian-

categorical diffusion trained on MM CelebA-HQ-25 in the remaining supplementary material (Fig-
ure A.6, Figure A.7, and Figure A.8). Since diffusion-based models produce different results based
on the guidance scale of the classifier-free guidance, we sample images from results exhibiting FID
around 20. The guidance scales for each model to achieve an FID of 20 are 2, 10, and 10 for LDM,
Imagen, and the Gaussian-categorical diffusion, respectively. We also provide uncurated results for gen-
erated image-layout pairs from the Gaussian-categorical diffusion model in Figure A.9 and Figure A.10.



Real Image Ours Imagen LDM LAFITE

The person has arched

eyebrows. She wears heavy

makeup, and earrings. She

is attractive.

She wears lipstick, 

earrings. She has blond

hair, wavy hair, arched

eyebrows, and pointy

nose. She is attractive.

The woman has mouth slightly

open, rosy cheeks, narrow

eyes, high cheekbones, big

nose, and bushy eyebrows. 

She is smiling, and attractive. 

She wears earrings.

This person has blond hair, 

pointy nose, and arched

eyebrows. She is young. 

She wears earrings, and 

heavy makeup.

She has black hair, big lips, 

oval face, and bushy

eyebrows and is wearing

lipstick, and earrings.

The person has brown hair, 

arched eyebrows, high

cheekbones, rosy cheeks, 

pointy nose, and wavy hair

and is wearing earrings, and 

heavy makeup.

This person has big nose, 

and pointy nose. She is

young. She wears earrings, 

and heavy makeup.

Text Input

Figure A.6. Qualitative comparison between the Gaussian-categorical diffusion model and existing text-to-image generation models on
MM CelebA-HQ-25. We observe that existing models struggle to generate accessories such as earrings.



He has bushy eyebrows, 

gray hair, and sideburns. 

He is bald.

The man has pointy

nose, and big nose. He

is bald. He has no

beard.

This person is bald and 

has pointy nose, and 

big nose.

This man has double chin, 

high cheekbones, oval face, 

big nose, big lips, and bags

under eyes. He is young, 

chubby, and bald and wears

necktie. He has no beard.

He is wearing necktie. He

is bald and has bushy

eyebrows, arched

eyebrows, bags under

eyes, big nose, pointy nose, 

and sideburns.

This man is bald and 

has mustache.

The man has high

cheekbones, big lips, 

and oval face. He is

bald.

Real Image Ours Imagen LDM LAFITEText Input

Figure A.7. Qualitative comparison between the Gaussian-categorical diffusion model and existing text-to-image generation models on
MM CelebA-HQ-25. We observe that existing models tend to generate hair even when given text conditions specifying baldness.



Real Image Ours Imagen LDM LAFITE

This person has pale skin, 

mouth slightly open, bags

under eyes, gray hair, 

double chin, and big nose. 

He is chubby.

This man has wavy hair, 

big lips, brown hair, and 

pale skin.

She wears lipstick. She

has pale skin, pointy nose, 

blond hair, and high

cheekbones. She is young.

This attractive, and 

young person has pale

skin, and big nose.

She has pale skin, arched

eyebrows, and wavy hair

and is wearing earrings, 

and heavy makeup.

The person wears heavy

makeup, earrings. She

has arched eyebrows, 

blond hair, and pale skin. 

She is young.

She is wearing earrings, 

and lipstick. She has wavy

hair, pale skin, and arched

eyebrows. She is attractive.

Text Input

Figure A.8. Qualitative comparison between the Gaussian-categorical diffusion model and existing text-to-image generation models on
MM CelebA-HQ-25. We observe that existing approaches often fail to appropriately generate colors of skin.



She has rosy cheeks. She is

smiling, and attractive. She wears

necklace.

She has big lips, and wavy hair

and wears lipstick. She is young.

He has mouth slightly open, 

bushy eyebrows, black hair, and 

straight hair. He is young. He has

beard.

This woman has oval face. She is

young.

This person has wavy hair, pointy

nose, and blond hair. She is

wearing lipstick. She is attractive.

This man has straight hair. He is

attractive.

She has arched eyebrows, and 

big nose. She wears earrings. 

She is smiling.

This person is attractive and has

mustache, sideburns, and pointy

nose.

The person is young and has

blond hair.

He wears necktie. He has black

hair, and high cheekbones. He is

smiling, and young.

This person has bushy eyebrows, 

mouth slightly open, arched

eyebrows, high cheekbones, and 

big lips. She is attractive, and 

smiling. She wears heavy makeup.

This person has oval face, and big

lips. She is attractive.

She is wearing necklace, and 

heavy makeup. She has arched

eyebrows. She is young.

This woman is wearing necklace, 

lipstick. She has mouth slightly

open, big lips, high cheekbones, 

and narrow eyes.

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

She is wearing lipstick, and heavy

makeup. She has big lips, blond

hair, wavy hair, pointy nose, 

arched eyebrows, and high

cheekbones. She is young.

Figure A.9. Example image-layout pairs generated by the Gaussian-categorical diffusion trained on the MM CelebA-HQ-100 dataset.



Generated

Image-Layout

Input Text

An image of an urban street view

with Skies, Traffic signs, Buildings, 

Poles, Terrains, Cars, Bicycles, 

Roads, Sidewalks, Vegetations

and People. 

An image of an urban street view

with Skies, Fences, Roads, 

Terrains, People, Bicycles, Traffic

lights, Vegetations, Buildings, 

Poles, Sidewalks and Traffic signs.

An image of an urban street view

with Skies, Traffic signs, Roads, 

Buildings, Cars, People, Poles, 

Vegetations and Riders.

An image of an urban street view

with Buildings, Roads, People, 

Traffic signs, Skies, Cars, Poles, 

Vegetations and Sidewalks.

An image of an urban street view

with Bicycles, Terrains, 

Vegetations, Sidewalks, Traffic

signs, Cars, Riders, Trucks, 

Buildings, People, Poles, Skies

and Roads.

An image of an urban street view

with Cars, Buildings, Fences, 

Poles, Skies, Traffic lights, Traffic

signs, Sidewalks, Vegetations, 

Roads and Terrains.

An image of an urban street view

with Terrains, Riders, Sidewalks, 

Buildings, Traffic signs, Bicycles, 

Vegetations, Fences, Roads, Poles, 

Skies, Traffic lights, Cars and 

People.

An image of an urban street view

with Traffic lights, Walls, Traffic

signs, Cars, Bicycles, Sidewalks, 

Skies, Vegetations, Poles, 

Buildings, Roads and Terrains.

An image of an urban street view

with Sidewalks, Vegetations, Traffic

signs, Buildings, People, Roads, 

Cars, Traffic lights, Bicycles, Skies

and Poles.

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Figure A.10. Example image-layout pairs generated by the Gaussian-categorical diffusion trained on the cityscapes dataset.
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