
A. Proof
A.1. Proof of PSR bounded between 0 and 1

Proof. In the main paper, our proposed scoring rule PSRP is defined as

PSRP (yj) = 1−
N∏
i=1

(1− Pr(yj ∈ SP (xi))) ,

where

Pr(yj ∈ SP (xi)) =

{
1− ||xi−yj ||2

R , if ||xi − yj ||2 ≤ R

0, otherwise

and

R =
a

N

N∑
i=1

NNDk(xi).

By the definition of Pr(yj ∈ SP (xi)), it is bounded between 0 and 1 for all i:

0 ≤ Pr(yj ∈ SP (xi)) ≤ 1,∀i

Thus,

0 ≤ 1− Pr(yj ∈ SP (xi)) ≤ 1,∀i

Multiplication of N values within [0,1] is also between 0 and 1 by the inequality properties:

0 ≤
N∏
i=1

(1− Pr(yj ∈ SP (xi))) ≤ 1

Finally,

0 ≤ PSRP (yj) = 1−
N∏
i=1

(1− Pr(yj ∈ SP (xi))) ≤ 1

Therefore, PSRP (yj) is bounded within [0,1]. The same procedure symmetrically applies to PSRQ(xi).
■

B. Related work
Statistical divergence metrics mainly measure the disparity between real and generated image distributions into a single
value. For instance, the Inception Score [14] (IS) assesses the quality of generated images, utilizing the label distribution
assigned by the InceptionV3 model. High diversity and label confidence in generated images result in a better score. The
Frechet Inception Distance [5] (FID) computes the distance between real and generated image distributions in a feature space
defined by the Inception network. A lower FID implies that generated images are closer to real ones in this feature space.
Meanwhile, the Kernel Inception Distance [2] (KID) refines the concept behind FID by relaxing its Gaussian assumption.
Instead, KID calculates the squared Maximum Mean Discrepancy between Inception representations of real and generated
samples with a polynomial kernel. Although these metrics are widely adopted due to their alignment with human evaluations,
they fall short in providing detailed insights into fidelity and diversity.

Precision and recall metrics Precision and Recall [13, 10] introduced an approach using precision and recall to distinguish
between fidelity and diversity of generative models. In this context, precision evaluates how closely generated samples
resemble real ones, while recall gauges the generator’s capability to reproduce all samples from the training set. Building
on this foundation, subsequent research endeavored to address perceived limitations in the precision and recall framework.



Table 1: The participants were asked to choose between two generated images that were sorted by L. Specifically, Llow

consists of images with high DSR value but low PSR value, while Lhigh consists of images with high PSR value but low DSR.

PSR vs. DSR
Llow Lhigh

Preference Score ↑ 17.40% 82.60%

Density and Coverage [11] expressed concerns over the contemporary precision and recall metrics, highlighting that they: 1)
struggle to recognize a perfect match between identical distributions, 2) are not sufficiently robust in the presence of outliers,
and 3) rely on arbitrary evaluation hyperparameters. As a remedy, they introduced Density and Coverage metrics. While
precision traditionally examines if a generated sample falls within any neighborhood sphere, Density evaluates the number
of real-sample neighborhood spheres encompassing that generated sample. However, in this paper, we have systemically
demonstrated that D&C still remain vulnerable to outliers and have conceptual limitation that make Coverage insensitive to
distribution change.

In a subsequent contribution, another work [1] proposed a tri-dimensional evaluation measure, encompassing α-Precision,
β-Recall, and Authenticity, aimed at delineating the fidelity, diversity, and generalization prowess of generative models. They
posit that a fraction 1− α (or 1− β) of real (or synthetic) samples can be considered as outliers, with the remainder deemed
typical. Here, α-Precision represents the proportion of synthetic samples that align with the most typical α real samples.
Conversely, β-Recall indicates the proportion of real samples enveloped by the most representative β synthetic samples.
Importantly, α-Precision and β-Recall span the entire [0, 1] interval, offering comprehensive precision-recall curves over a
singular value. In order to employ their metric, they embed samples into hyperspheres, with a majority of samples clustered
around the centers. Although their approach commendably addresses the outlier conundrum by adjusting metrics for varying
supports, it relies on specific support modifications. This calls for extra training to create a specific embedding domain, such
as a center-heavy hypersphere, culminating in computational challenges and practical constraints, particularly with expansive
datasets like ImageNet. Contrarily, our proposed technique is a versatile solution, apt for any feature domain.

C. Comparing scoring rules
C.1. User study

We conducted a user study to evaluate the effectiveness of scoring rules in quantifying the quality of generated images. The
study followed a 2-alternative force-choice paradigm as presented in previous work [12]. Participants were presented with two
images, one from the set Llow which consisted of images with the lowest L values as described in the main paper, and the
other from the set Lhigh which contained images with the highest L values. Participants were then asked to select the image
they considered to have better quality, i.e., more realistic and with fewer artifacts, based on the presented options. The result
presented in Tab. 1 affirms the effectiveness of our proposed scoring rule, PSR, in reflecting the quality of generated images.

C.2. Additional examples

We provide additional qualitative examples of generated images sorted by condition L (PSR - DSS). Fig. 3 shows the
generated images from BigGAN [3] trained on CIFAR-10 [9], sorted by condition L without cherry-picking. Images with the
highest L tend to be more realistic than those with the lowest L. Fig. 4 also shows the generated images from StyleGAN [7]
trained on FFHQ [7], sorted by condition L also without cherry-picking. Fig. 4a shows images with the highest L whereas
Fig. 4b shows images with the lowest L. Most images with high L values are easily recognizable, with simple backgrounds. In
contrast, most images with low L values exhibit severe distortions, and their backgrounds are complicated and distorted.

D. Additional experiments
D.1. Hyperparameter selection

Our metric has two defining hyperparameters: a and k. In order to pinpoint hyperparameters that optimize both the
robustness and sensitivity of the metric, we revisited the outlier experiment from Sec. 5.1 (in the main paper) for varying a
and k, and the results are shown in Fig. 1b. An increase in a diminishes the metric’s sensitivity to shifts in distribution, a
consequence of our scoring rule becoming more lenient (the slope of the linear function becomes more gradual) with escalating
a values. After our analyses, we settled on a = 1.2 since it amplifies the metric value when both distributions are identical and
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Figure 1: (a) Behavior of metrics between X ∼ N(0, I) and Y ∼ N(0, vI) as v changes between [0.2, 1.5]. Because Density
goes over 1 (up to nearly 1000), the y-axis for Density is on the right side of the plot for better visualization. (b) Ablation
study for selecting hyperparameter a and k.
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Figure 2: Qualitative examples of CIFAR-10 [9] and the images generated by DI [15].

avoids saturation near u = 0. The choice of k doesn’t profoundly sway the metric’s sensitivity, which is also illustrated in
Fig. 3 of the main paper. Therefore, we opted for k = 4, a value intermediate between the choices for P&R and D&C.

D.2. Outlier experiment with real-world distribution

We further investigate the robustness of metrics by using CIFAR-10 [9] and DeepInversion (DI) model [15] trained for
CIFAR-10. DI is an inversion model trained to generate images that match the pre-trained neural network’s intermediate
feature statistics without explicitly observing the source images. Therefore, DI generates images that are somewhat distorted
and unrecognizable (See Fig. 2), yet preserves the statistics of CIFAR-10. We split generated images from DI into two subsets:
inliers and outliers. We identify the outliers by computing the average of the kth nearest distance among real samples and
selecting generated images whose nearest distance from real samples is greater than the average. Then, we substitute the real
samples with these outliers. In Fig. 1, we present the metric increments with respect to the number of outliers. We compare the
increment of each metric with respect to the case where there are no outliers. The result shows that I-precision increases by
about 0.9 with just one outlier, indicating its vulnerability to outliers. In addition, with only five outliers, Density shows a
significant increase and eventually exceeds the increment of I-precision. This is because DSR accumulates the constant-density
of hyperspheres, as we discussed in the main paper. Furthermore, we observe that I-precision and Density suddenly decrease
as the number of outliers exceeds their hyperparameter k. This is not desirable behavior for a reliable and consistent metric.
The sudden drop occurs because the size of the kNN hypersphere can change dramatically as the number of outliers exceeds k,



Table 2: Quantitative result of various generative models on real-world datasets. The reported values are obtained by measuring
each metric five times and taking the average. Bolded values indicates the top scores evaluated by the corresponding metric.

Model FID↓ PP↑ PR↑ F1↑ IP↑ IR↑ F1↑ D↑ C↑ F1↑
ImageNet 256x256
ADM [4] 4.95 0.538 (1.0e-5) 0.732 (1.2e-5) 0.621 0.681 (3.4e-5) 0.688 (2.5e-4) 0.684 1.52 (6.1e-3) 0.876 (1.1e-5) 1.112
ADM-G [4] 4.58 0.699 (3.1e-5) 0.587 (1.4e-5) 0.638 0.818 (7.4e-5) 0.606 (1.7e-5) 0.696 2.071 (1.4e-3) 0.956 (2.4e-5) 1.307
BigGAN [3] 8.12 0.751 (3.4e-5) 0.465 (2.8e-5) 0.574 0.874 (5.4e-5) 0.403 (2.1e-5) 0.551 2.481 (3.4e-3) 0.945 (2.9e-5) 1.368

AFHQv2 512x512
StyleGAN2 [8] 4.62 0.568 (1.6e-5) 0.689 (3.6e-5) 0.623 0.716 (1.4e-4) 0.494 (3.1e-5) 0.584 1.886 (4.4e-3) 0.790 (1.9e-5) 1.113
StyleGAN3-R [6] 4.40 0.564 (9.4e-6) 0.725 (1.4e-5) 0.634 0.685 (6.4e-5) 0.591 (3.7e-5) 0.635 1.576 (5.1e-4) 0.770 (7.1e-5) 1.034
StyleGAN3-T [6] 4.04 0.567 (6.2e-5) 0.727 (5.1e-5) 0.637 0.699 (1.6e-4) 0.578 (8.1e-5) 0.632 1.624 (1.1e-3) 0.792 (1.2e-5) 1.065

LSUN Bedroom 256x256
DDPM [8] 4.88 0.799 (4.8e-5) 0.749 (1.4e-5) 0.773 0.606 (2.2e-4) 0.444 (1.4e-4) 0.512 1.701 (3.4e-3) 0.977 (6.4e-5) 1.241
ADM [4] 1.91 0.839 (8.8e-5) 0.731 (6.4e-5) 0.781 0.659 (5.8e-5) 0.494 (3.4e-5) 0.565 1.929 (2.8e-3) 0.993 (1.2e-5) 1.311
StyleGAN2 [8] 2.35 0.801 (2.1e-5) 0.753 (1.8e-5) 0.776 0.591 (1.9e-5) 0.501 (2.7e-5) 0.543 1.732 (8.6e-4) 0.986 (2.9e-5) 1.257

MetaFaces 1024x1024
StyleGAN2 [8] 15.22 0.896 (7.8e-5) 0.703 (6.7e-5) 0.788 0.797 (4.4e-4) 0.291 (1.4e-4) 0.426 2.171 (3.8e-3) 0.996 (1.1e-5) 1.366
StyleGAN3-R [6] 15.11 0.890 (3.6e-5) 0.770 (2.9e-5) 0.825 0.738 (1.4e-4) 0.461 (1.6e-5) 0.567 1.864 (2.3e-3) 0.992 (3.4e-5) 1.295
StyleGAN3-T [6] 15.33 0.901 (3.4e-5) 0.747 (2.5e-5) 0.817 0.748 (8.1e-5) 0.478 (5.4e-5) 0.583 1.885 (9.7e-4) 0.997 (1.1e-5) 1.304

ImageNet 64x64
ADM [4] 2.60 0.738 (5.1e-5) 0.734 (3.4e-5) 0.736 0.734 (1.1e-5) 0.647 (3.4e-5) 0.688 1.867 (2.6e-3) 0.956 (5.4e-5) 1.265
BigGAN [3] 4.07 0.776 (5.4e-5) 0.612 (7.2e-5) 0.684 0.792 (8.9e-5) 0.531 (2.1e-5) 0.635 2.360 (4.4e-3) 0.954 (1.4e-5) 1.359

ImageNet 128x128
ADM [4] 5.91 0.601 (5.8e-5) 0.737 (4.9e-5) 0.662 0.700 (8.4e-5) 0.697 (7.2e-5) 0.699 1.613 (9.1e-4) 0.925 (3.4e-5) 1.176
BigGAN [3] 6.01 0.772 (1.1e-5) 0.473 (2.3e-5) 0.586 0.862 (3.6e-5) 0.452 (1.6e-5) 0.593 2.521 (1.7e-3) 0.954 (3.8e-5) 1.384

highlighting the susceptible property of instance-specific kNN. On the other hand, P-precision is less affected by the outlier
and increases linearly, demonstrating robustness to both outliers and k.

D.3. Evaluating generative models

Here, we provide additional quantitative results of the state-of-the-art generative models trained on various datasets using
existing metrics. We use officially pre-trained models from their official codes12 and take FID scores from their papers. The
result of FID, IP&IR, D&C, and our PP&PR is reported in Tab. 2. For all metrics except FID, we measure the metrics between
50K generated samples and all available real samples, but up to 10K, as recommended in [4].

References
[1] Ahmed Alaa, Boris Van Breugel, Evgeny S Saveliev, and Mihaela van der Schaar. How faithful is your synthetic data? sample-level

metrics for evaluating and auditing generative models. In International Conference on Machine Learning, pages 290–306. PMLR,
2022. 2
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(a) Highest L

(b) Lowest L

Figure 3: Qualitative examples of BigGAN [3] generated images on CIFAR-10 [9] sorted according to L (PSR - DSR). (a) are
images with highest L and (b) are images with lowest L.



(a) Highest L
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Figure 4: Qualitative examples of StyleGAN [7] generated images on FFHQ [7] sorted according to L (PSR - DSR). (a) are
images with highest L and (b) are images with lowest L.


