
Appendix

In this additional document, we describe more details
of SeiT in Appendix A, including the details of token
encoding-decoding algorithms (Appendix A.1), the visual-
ization of Emb-noise augmented tokens (Appendix A.2).
We also include additional experimental results in Ap-
pendix B, including the hyperparameter details (Ap-
pendix B.1), the full experimental results of Table 2 (Ap-
pendix B.2), the additional results on storage-efficient pre-
training (Appendix B.4), exploring other tokenizers (Ap-
pendix B.5), and robustness benchmarks (Appendix B.5).

A. More Details for SeiT

A.1. Pseudo-code for Token Encoding-Decoding

Algorithm 1 and Algorithm 2 describe the psuedo-codes
for the proposed token encoding and decoding. Here, we
assume max ti < 2M+1 for the simplicity. For example,
in our main experiments, each token belongs to 391 classes
and we set M = 8, hence, max ti = 391 < 28+1 = 512.
If the number of token classes is larger than 2M+1, then
our algorithm can be naturally extended by repeating line
6-7 in Algorithm 1. By this simple algorithm, we achieved
a nearly optimal compression ratio (1.11 kB vs. 1.08 kB
per image) where almost 0.63 smaller than the 16-bit en-
coding (2.0 kB per image). Note that, we use the native
gzip library to perform Huffman encoding and decoding
for simplicity.

Algorithm 1 An algorithm for token encoding
Require: A sequence of tokens T = [t1, . . . , tN], the bits

for the storage M

1: LT [�] . Initialize an empty list for tokens
2: Lidx [�] . Initialize an empty list for start indices
3: j 0
4: while i N do
5: if ti � 2M then
6: LT.append (2M)
7: LT.append (ti � 2M)
8: j j + 2 . Assume ti < 2M+1 for simplicity
9: else

10: LT.append (ti)
11: j j + 1
12: end if
13: Lidx.append (j)
14: i i+ 1
15: end while
16: Return: Huffman encoding (LT , Lidx)

Algorithm 2 An algorithm for token decoding
Require: A compressed bytestring LT 0 from Algorithm 1

1: LT = [t0, . . . , tN], Lidx
Huffman deencoding (L0

T , L
0
idx)

2: T [�]
3: i 0
4: while Lidx is not empty do
5: j Lidx.pop (0)
6: k i

7: while k j do
8: if tk �M then
9: T.append (tk + tk+1)

10: k k + 2
11: else
12: T.append (tk)
13: k k + 1
14: end if
15: end while
16: i j

17: end while
18: Return: T

(a) Reconstruction (b) Full-size noise added

(d) Ours(c) Channel-wise noise added

Figure A.1. Emb-Noise visualization. “Reconstruction” denotes
the reconstructed image by the ViT-VQGAN decoder from the ex-
tracted tokens. “Full-size noise” is a random noise whose size is
equivalent to the embedding vectors.

A.2. ViT-VQGAN decoded images for Emb-Noise

Fig. A.1 and Fig. A.2 show the visualization examples
of the Emb-Noise augmented tokens and the tokens without
augmentation. We use the ViT-VQGAN decoder for visu-
alization. We observe that our Emb-Noise can make mean-
ingful distortions on the decoded images.

Figure A.2. Channel-wise modification visualization. We present ViT-VQGAN decoded images obtained by adding a constant to each
of the 32 channels in codebook vectors.

B. Additional Experimental Results
B.1. Hyperparameter details

Table B.1 shows the full list of hyperparameters used
in our experiments. All hyperparameters are for the ViT-B
backbones. In the table, Token IN-1k corresponds to SeiT
(ImageNet-1k) in Table 2, Token IN-21k PT corresponds
to token pre-training in Table 3, and Token FT and Image
FT correspond to token and image fine-tuning in Table 3,
respectively. For other backbones and datasets, we only ad-
just the learning rate as the maximum learning rate showing
a stable convergence (e.g., We use 0.15 for ResNet and ViT-
S uses the same learning rate as ViT-B).

B.2. The full experimental results
We report the full experimental results in Table B.5. De-

tails are the same as Table 2.

B.3. Other datasets
The performances of SeiT on various datasets are re-

ported in Table B.2. We tokenize the datasets and then
fine-tune a model (ViT-B) with the tokenized dataset, us-
ing token-trained model weights. The token-trained models
weights, Token (IN-1k) and Token (IN-21k, IN-1k) achieve
top-1 accuracies of 74.0%, 81.1% on ImageNet-1k, respec-
tively. The pixel counterpart is fine-tuned on pixel target
datasets from the pixel pre-trained model; Pixel (IN-1k),
showing 81.8% top-1 accuracy on IN-1k. We followed the
pixel-training recipes of DeiT [65]. Although we do not

Figure B.1. Adversarial robustness of DeiT and SeiT by vary-
ing ". " = 0 denotes the clean accuracy.

modify the training recipe for tokens, the results verify the
possibility of SeiT on those datasets.

B.4. Three-stage storage-efficient pre-training

Following BeiT v2 [48], we extend our storage-efficient
pre-training in three stages, namely, 21k token pre-training
! 1k token pre-training! 1k image fine-tuning. For sim-
plicity, we directly fine-tune the “21k token pre-trained and
1k token fine-tuned model” (i.e., 81.1% model in Table 3)
on the image pixels with the same optimization hyperpa-
rameter of the image fine-tuned model. As a result, we have
82.8% top-1 accuracy, slightly better than the original two-
staged training strategy (+0.2% than 82.6%).

Methods DeiT IN-1k [65] Token IN-1k Token IN-21k PT Token IN-1k FT Image IN-1k FT

Epochs 300 300 270 100 100

Batch size 1024 1024 2048 4096 512
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 0.0005 x bs

512 0.00075 x bs
512 0.0015 0.00001 0.0005

Learning rate decay cosine cosine cosine 8 cosine
Weight decay 0.05 0.1 0.02 0.1 0.05
Warmup epochs 5 5 5 5 5
Label smoothing 0.1 0.1 0.1 0.1 0.1
Dropout 8 8 8 8 8
Stoch. Depth 0.1 0.1 0.1 0.15 0.1
Gradient Clip 8 8 8 8 8

Cutmix prob. 1 1 1 1 1
Mixup prob. 0.8 0 0 0 0.8
RandAug 9 / 0.5 - - - 9 / 0.5
Repeated Aug 4 - - - 8
Erasing prob. 0.25 - - - 0
EDA prob. - 0.25 (RS) / 0.25 (SR) 0 0 -
Emb-Noise prob. - 0.5 0.5 0.5 -

Table B.1. Hyperparamters for SeiT and DeiT-B. All hyperparameters are for the ViT-B backbone. DeiT IN-1k is the same as the original
DeiT paper (baseline).

Pre-trained on Flowers Cars iNat18 iNat19

Pixel (IN-1k) 98.0 91.8 73.0 77.7
Token (IN-1k) 93.5 79.7 43.1 50.1
Token (IN-21k, IN-1k) 98.7 84.5 50.1 58.3

Table B.2. Other datasets. We report the top-1 accuracies on di-
verse fine-grained datasets achieved by SeiT. We tested SeiT on
the Flowers [46], StanfordCars [36], iNaturalist (iNat)-18 [28] and
iNat-19 [27] datasets.

B.5. Exploring other tokenizers
In this subsection, we explore other tokenizers rather

than ViT-VQGAN [72], e.g., VQGAN [21]. We em-
ploy four VQGAN models from the official repository3,
ImageNet-trained VQGAN with patch size 16 and vocab-
ulary size 1024, ImageNet-trained VQGAN with patch size
16 and vocabulary size 16384, OpenImages [37]-trained
VQGAN with patch size 8 and vocabulary size 256, and
OpenImages [37]-trained VQGAN with patch size 8 and
vocabulary size 8192. Here, the last VQGAN model is
trained with the Gumbel softmax [30, 41] quantization, in-
stead of the original vector quantization by VQ-VAE [67].
Here, we slightly change our Stem-Adopter from 4⇥4 Conv
with stride 2 to 2⇥2 Conv with stride 1 for tokenizers with
patch size 16.

In Table B.3, we report the ViT-S (SeiT) top-1 accuracy
on the ImageNet-100 benchmark by varying the choice of
tokenizers. We also report the reported ImageNet-1k val-
idation FID score of each tokenizer. In the table, we ob-
serve that the top-1 accuracy of SeiT follows the generation

3
https://github.com/CompVis/taming-transformers

quality (FID) if we use the same quantization method (e.g.,
vector quantization). The ViT-VQGAN shows the best FID
(1.28) as well as the best ImageNet performance with SeiT
(77.3). While the Gumbel quantized VQGAN achieves the
best performance, in practice, we use ViT-VQGAN due to
two reasons. First, the storage efficiency: 2886 valid codes
need 1.5 times more storage than 391 valid codes. Second,
Although the OpenImages [37]-trained VQGAN shows bet-
ter quality, it needs to be trained on a large-scale external
dataset. We did not use the OpenImages-trained VQGAN
for a fair comparison with other ImageNet-1k-only training
methods.

B.6. Robustness benchmarks
We compare ViT-S models trained on ImageNet-1k with

different training strategies using robustness benchmarks.
We employ three scenarios: (1) noise and blur scenario (2)
domain shift scenario (3) adversarial attack scenario. For
the first scenario, we add Gaussian noise and Gaussian blur
to the validation images. We use ImageNet-R [26] and
Sketch-ImageNet [69] for testing the robustness against do-
main shifts. Finally, we use a weak version of AutoAttak
[17] for measuring adversarial robustness.

As the original DeiT is trained on strong augmentation,
such as RandAugment or 3-Augment, we also compare our
method with “weak augmented” ViT-S, where it only em-
ploys resized random crop (RRC) and CutMix [73]. Our
assumption is that because the pixel-trained models are sen-
sitive to imperceptible details, they will be less robust than
our approach in noise or adversarial attack scenarios. How-
ever, on the other hand, because our method relies on the en-
coding power of the pre-trained tokenizer, if the employed
tokenizer is not a robust feature extractor, our method could

Tokenizer Training dataset Quantiztation Voca size (# of valid voca) PS FID ViT-S (SeiT) Acc

VQGAN ImageNet Vector quantization 1024 (454) 16 7.94 75.3
VQGAN ImageNet Vector quantization 16384 (971) 16 4.98 76.9
VQGAN OpenImages Gumbel quantization 8192 (2886) 8 1.49 79.1
VQGAN OpenImages Vector quantization 256 (256) 8 1.49 81.8
ViT-VQGAN ImageNet Vector quantization 8192 (391) 8 1.28 77.3

Table B.3. Exploring other tokenizers. Various ViT-S (SeiT) results on the ImageNet-100 benchmark are shown. We compare various
VQGAN tokenizers with ViT-VQGAN by varying the quantization methods (Gumbel softmax vs. vector quantization) the vocabulary size,
the valid vocabulary size (the number of classes actually used for the ImageNet-1k training dataset), and the patch size (PS).

Model Data format Clean Gauss. Noise Gauss. Blur ImageNet-R Sketch

ViT-S (DeiT) Pixels 79.9 75.1 (6.0%) 73.4 (8.1%) 28.8 (63.9%) 29.9 (62.6%)

ViT-S (Weak Aug) Pixels 78.0 64.7 (17.1%) 66.8 (14.4%) 20.8 (73.4%) 18.1 (76.8%)
ViT-S (SeiT, ours) Tokens 74.0 60.8 (17.3%) 65.3 (11.2%) 26.0 (64.6%) 23.0 (68.7%)

Table B.4. Robustness evaluation. We show the clean and robust accuracies against corruptions and domain shifts of each model trained
on ImageNet-1k. The performance drops are put in parentheses (lower is better) for robust accuracies.

be more vulnerable than pixel-trained counterparts.
Table B.4 shows the results of the first and the sec-

ond scenarios. Here, we observe two important findings.
First, when we use the same augmentations with the same
strength (ViT-S Weak Aug vs. ViT-S SeiT), SeiT shows
smaller performance drops on both noise scenarios and do-
main shift scenarios. On the other hand, when we use
strong pixel-level augmentations, the pixel-trained counter-
part outperforms our approach. It implies that the key to the
input pixel robustness depends on the pixel-level augmenta-
tions with severe distortions as observed by previous studies
[13, 62]. However, because our method uses only tokens,
not pixels directly, investigating how to explore pixel-level
distortion augmentations on the token level will be an open
question and an interesting future research direction.

We also compare the adversarial robustness of DeiT-
S and SeiT-S. We employ the APGD (a step size-free
version of PGD attack [42]) with cross-entropy loss and
DLR loss, following AutoAttack [17]. Because SeiT em-
ploys discrete non-differentiable representations in the com-
putational graph, we employ the straight-through estima-
tor (STE) [9] to estimate the non-differentiable gradients,
following Athalye et al. [5]. We also evaluate the non-
quantized version of the quantizer (i.e., omitting the vector
quantization process, but using the extracted feature by the
encoder directly to the ViT input), but we empirically ob-
serve that attacking the non-quantized version cannot drop
the performance at all. Instead, we use the STE, also used
during the training as well as the previous extensive robust-
ness study [5]. We compare the attacked accuracies of DeiT
and SeiT by varying " (a control parameter for the attack
intensity) from 0 to 8 in Fig. B.1. We observe that SeiT
shows almost neglectable performance drops even under the
strongest attack (showing 73.95 for " = 8 where 73.98 for

" = 0), where DeiT shows 2.8% top-1 accuracy.
However, we should be careful to interpret Fig. B.1; it

could be due to a strong obfuscated gradient effect [5] that
cannot be detected by a naive straight-through estimator.
Moreover, our method could be vulnerable to the codebook
attack by changing the token indices directly, not by per-
turbing the pixels. However, as an efficient and natural ad-
versarial attack on discrete domains is still an open prob-
lem [76] (e.g., altering indices as imperceptible to humans
but sensitive to machines — only a small index change can
make a huge semantic gap, such as replacing “huge” in the
previous sentence to “neglectable”), we leave the investi-
gation of advanced adversarial attack methods for SeiT be-
yond straight-through estimator as future work.

Method Storage size # of images Top1 Acc.

Full-pixels 100% 140 GB 1.28 M 81.8

Uniform random sampling

20% 27.2 GB 0.26 M 59.8
30% 41.0 GB 0.38 M 69.3
40% 54.6 GB 0.51 M 74.0
50% 68.4 GB 0.64 M 76.0
60% 82.0 GB 0.77 M 77.8
70% 95.7 GB 0.90 M 78.2
80% 109.3 GB 1.02 M 79.4
90% 123.1 GB 1.15 M 81.1

C-score based sampling

20% 26.3 GB 0.26 M 65.1
30% 39.8 GB 0.38 M 69.4
40% 53.3 GB 0.51 M 73.3
50% 66.9 GB 0.64 M 76.9
60% 80.6 GB 0.77 M 77.5
70% 94.3 GB 0.90 M 79.2
80% 108.1 GB 1.02 M 80.4
90% 121.8 GB 1.15 M 80.9

Adjusting image reolution

10% 5.3 GB 1.28 M 63.3
20% 9.6 GB 1.28 M 75.2
30% 16 GB 1.28 M 78.6
40% 24 GB 1.28 M 79.4
50% 34 GB 1.28 M 80.9
60% 46 GB 1.28 M 80.8
70% 60 GB 1.28 M 81.6
80% 75 GB 1.28 M 81.6
90% 93 GB 1.28 M 80.8

Adjusting JPEG quality factor

1 9.3 GB 1.28 M 67.8
5 11 GB 1.28 M 74.6

10 14 GB 1.28 M 78.1
25 23 GB 1.28 M 80.7
50 34 GB 1.28 M 81.1
75 50 GB 1.28 M 81.5
85 66 GB 1.28 M 81.3
90 79 GB 1.28 M 80.9
95 113 GB 1.28 M 81.6

SeiT (ImageNet-1k, ours) 1.36 GB 1.28 M 74.0
SeiT (ImageNet-1k-5M, ours) 7.49 GB 5.83 M 78.6

SeiT (ImageNet-1k, OpenImages-VQGAN) 1.36 GB 1.28 M 78.4
SeiT (ImageNet-1k-5M, OpenImages-VQGAN) 7.49 GB 5.83 M 78.7

SeiT (IN-21k tokens! 1k tokens, ours) 16 GB 12.4 M 81.1
SeiT (IN-21k tokens! 1k tokens, OpenImages-VQGAN) 16 GB 12.4 M 82.3

SeiT (IN-21k tokens! 1k pixels, ours) 154 GB 12.4 M 82.6
SeiT (IN-21k tokens! 1k tokens! 1k pixels, ours) 156 GB 12.4 M 82.8

Table B.5. The full main results. The full results of Fig. 1, Table 2 and Table 3. The results in the rows denoted to OpenImages-VQGAN
are obtained by utilizing OpenImages-trained VQGAN with patch size 8 and vocabulary size 256 as the tokenizer.

