Appendix
A. Off-the-shelf Models
A.l. 2D Pose Estimation

As mentioned in Sec. 6.1, we adopt a pretrained HR-
Net [32] model for 2D pose estimation. Since the model
was originally trained on MSCOCO [21], which uses
slightly different format of human body keypoints, we
fine-tune the model to convert the keypoints to the de-
sired format. (Note that MSCOCO, MuPoTS-3D, and
CMU-Panoptic use different keypoints, while MuPoTS-
3D, MuCo-3DHP, and MPI-INF-3DHP share the same
one.) The model is fine-tuned on the MuCo-3DHP dataset
for MuPoTS-3D testing, and fine-tuned on CMU-Panoptic
training dataset for CMU-Panoptic testing, respectively.
Each of which is fine-tuned for 20 epochs with a learning
late of 10~%, which is 10 times smaller compared to the
original learning rate at training.

A.2. 2D Pose Tracking

In Sec. 6.1, we mention that we use ByteTrack [42] for
re-identification of each individual. We also merge the ap-
pearance gallery idea [37] to consider appearance variation
caused by movements. While tracking individuals frame by
frame, the most recent 100 appearance features are stored
in their tracklet. For measuring similarities, in total three
similarities are used. In addition to the appearance feature
and IoU, we also consider the similarity between poses as
well.

We observe clean and accurate tracking is important for
end-to-end performance. Specifically, performance of our
model is quite sensitive to the tracking result, especially, to
the weights among 3 similarities above. Giving a higher
weight to the appearance similarity might help the model
to match re-appearing individuals after a period of heavy-
occlusion, meanwhile it does not consider about their lo-
cation. In contrast, giving a higher weight to IoU or pose
similarity might help the model to accurately track the mo-
tion dynamics of individuals, but as a trade-off, it confuses
the model to match re-appearing individuals. We empiri-
cally find the optimal weights and use {0.4, 0.3, 0.3} for
each appearance, IoU, and pose similarity, respectively.

One thing to note is that the end-to-end evaluation met-
rics are not significantly affected by a few tracking fail-
ures, as it usually match each predicted individual with the
ground truth frame-by-frame. For a real-world application,
largely disturbing tracklets might be omitted and only some
clean tracklets could be chosen for the sake of reliability.

B. Details on Data Augmentation

The data augmentation hyperparameters, «, 3,7,6, @,
are empirically chosen, considering typical movement

range of a person for translations and approximate an-
gular distance between cameras of the source dataset
for rotations, respectively. «, 3 are sampled from a
Gaussian N(0,6.0%) and + is randomly chosen among
{-1.0,0,1.5,3.0}, where the unit is meters. # is uniformly
sampled within [—7/4,7/4], and ¢ is randomly chosen
among {—/6,0,7/6}.

Validity of a Training Example. Once a training exam-
ple is generated, we check its validity. First of all, the depth
z of all target 3D keypoints should be positive. Otherwise,
a subject with negative depth will appear flipped both verti-
cally and horizontally after projection.

Also, as we constrain the number of people appearing in
the scene to be consistent throughout the temporal receptive
field (i.e. people are assumed not to be jumping in or fading
out), we force the resulting trajectory to be entirely located
within the 2D frames. Precisely, we keep the root key points
to appear within the image boundary but let other joints po-
tentially be out of the scene. For this, we might naively
filter out examples that violate the constraints and regener-
ate, but this is not efficient. Instead, we apply PR, GPT, and
GPR first, and PT at the last. Unlike other operations, we
can constrain the feasible range for PT individually, satis-
fied simply by solving a constrained linear programming:
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where (z,y, z) is an original root joint in the 3D space,
(Az, Ay, Az) is the amount of displacement applied to this
subject, converted from («, 8) on the basis {by, by} to the
standard basis (e1, ez, €3), and W, H is the width and height
of the image.

C. More Quantitative Results

Tab. I lists the performance of our model and baselines
on individual test videos in MuPoTS-3D. We observe that
our proposed method, POTR-3D, outperforms baselines on
most videos, especially when severe occlusion occurs (TS
2,13, 14, 18, 20).

For reference, Fig. I illustrates the conventional camera
settings in CMU-Panoptic, and the ones we use in Sec. 6.3.

D. More In-the-wild Examples

Fig. [I-I1I illustrate qualitative results on MuPoTS-3D of
ours and baselines from side view, and top view. They ap-
peal that the depth estimation of POTR-3D is more accurate
and smooth.



Method ‘ PCKe1(%)1 ‘ TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TSI12 TSI13 TS14 TS15 TS16 TS17 TSI18 TS19 TS20
SingleStage [14] 80.9 - - - - - - - - - - - - - - - - - - -
SMAP [44] 73.5 888 712 774 777 80.6 499 86.6 513 703 892 723 817 63.6 448 797 869 81.0 752 736 672
SDMPPE [26] 81.8 944 775 790 819 853 728 819 757 902 904 792 799 751 727 811 899 89.6 818 817 762
POTR-3D (Ours) 83.7 920 80.2 837 84.0 854 751 915 743 707 884 856 8.5 8.1 771 828 908 868 875 857 82.6
Method \ PCK s (%) 1 \ TSI TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TSIl TSI2 TSI13 TS14 TSI5 TS16 TS17 TSI8 TSI19 TS20
VirtualPose [31] 44.0 - - — - - — - - - - - - — - _ _ _ _ _ _
SingleStage [14] 39.3 - - - - - - - - - - - - - - - - - - - -
SMAP [44] 352 214 227 583 275 373 122 492 40.8 531 439 432 436 397 283 495 238 180 269 250 388
SDMPPE [20] 315 59.5 447 514 460 522 274 237 264 391 236 183 149 382 265 368 234 144 197 188 251
POTR-3D (Ours) 50.9 50.1 421 710 60.5 58.6 504 669 415 500 696 423 492 632 493 690 356 369 353 293 463

Table I. Quantitative Comparison on MuPoTS-3D for Individual Test Videos. The best scores are marked in boldface.
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Figure I. Camera view points of CMU-Panoptic. (Left) Cam-
eras used in conventional benchmark for both training and testing.
(Right) Cameras used for our experiment in Sec. 6.3.

Fig. IV-XI illustrate more qualitative results of our
model on several challenging in-the-wild videos. We
present the results of 10 frames from the frontal view per
video to demonstrate both accuracy and smoothness. It ro-
bustly operates even in highly challenging situations, such
as heavy occlusions, dynamic motions, and non-static cam-
era movement. The results from other views are provided in
the demo video at https://www.youtube.com/@potr3d. To
create this video, we use a POTR-3D model trained on the
augmented dataset from MPI-INF-3DHP with Aug4, and
assume a general focal length (i.e., 1500) to denormalize
the depths. At last, some examples in Fig. XII include ad-
ditional failure cases, caused by tracking failure, and depth
ambiguity.


https://www.youtube.com/@potr3d
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Figure II. Qualitative Results on MuPoTS-3D of ours and recent baselines (Side View).
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Figure III. Qualitative Results on MuPoTS-3D of ours and recent baselines (Top View).
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Figure I'V. Additional Examples of in-the-wild inference (1/8) — Group dance (Massive movements and occlusions)
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Figure V. Additional Examples of in-the-wild inference (2/8) — Figure skating (Rampant movements and occlusions)
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Additional Examples of in-the-wild inference (3/8) — Figure skating (Rampant movements and occlusions)
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Figure VII. Additional Examples of in-the-wild inference (4/8) — Dance practicing (Padded input)
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Figure VIII. Additional Examples of in-the-wild inference (5/8) — Professional soccer (Rapid camera view change)
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Figure IX. Additional Examples of in-the-wild inference (6/8) — Professional Boxing (Rampant movements)
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Figure X. Additional Examples of in-the-wild inference (7/8) — Boy group dance practicing (Homogeneous Looking)
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Figure XI. Additional Examples of in-the-wild inference (8/8) — Girl group dance practicing (Massive movements and occlusions)
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Figure XII. Failure Cases. (Top) Tracking Failure, where one person is not totally tracked due to heavy occlusion. (Bottom) Depth
Ambiguity, where the depth for children is wrongly estimated which can be checked in the side view.



