
Appendix – Pretrained Language Models as
Visual Planners for Human Assistance

We structure the supplementary material as follows:

A. Implementation details of baselines: DDN [9], GPT3-
based [8, 30] language-only method and most-
probable actions.

B. Step-by-step algorithm for inference, for reproducibil-
ity and technical details.

C. Optimization, hardware, and training details associ-
ated with training VLaMP.

D. Comparisons to Ego4D’s LTA benchmark.
E. Expanded empirical results, benchmarking the above

additional baselines, and deep-dive into error analysis.

A. Baselines
In this section we include more information about base-

lines that we benchmark on VPA in experiments (Sec. 5).
First, we include necessary details of reproducing the
DDN [9] and how we keep it consistent and fair to the pro-
posed VLaMP. Second, we provide two additional baselines
– a heuristic baseline, which leverages the structure of our
goal-oriented activities for generating plans and a prompt-
based baseline using a large LM. Finally, we briefly discuss
prior procedural planning methods, which we choose not to
compare with. As mentioned in the main paper, we also
provide the std (standard error of mean) around the mean
for various models in Tab. 5.

A.1. DDN [9]
Technical Background. Chang et al. [9] proposed Dual
Dynamics Network (DDN) for procedural planning. The
objective is to learn a latent space representation of obser-
vations and actions in addition to a dynamics and conjugate
dynamics model that operate over this latent space. The
latent representations and recurrent RNN-based dynamics
model are learned together by minimizing a joint loss over
predicted observations and actions. Such dynamics mod-
eling in latent space is similar in spirit to the forecasting
module in VLaMP (Eq. (7)).
Implementation. As shown in Fig. 8, we instantiate DDN
for VPA by using an LSTM-based [28] fseq in the forecast-
ing module, which operates over the observation representa-
tions obtained using the same observation encoder fobs con-
sisting of pretrained S3D [84] and a mapper as VLaMP and
action representations from an embedding layer-based ac-
tion encoder fact. Unlike VLaMP, where the mapper aims to
project the visual observation representations into the input
space of the pretrained LM, the mapper in DDN only pro-
vides trainable parameters to finetune the frozen S3D repre-
sentations for downstream dynamics model. Both fseq and
fact are initialized with random weights. Just as VLaMP,

Figure 7: GPT-3 as a planner based on [30]. A language-
only baseline using GPT-3 on COIN. GPT-3 is prompted
autoregressively to generate next action based on the goal
and the history of actions taken for the goal.

DDN is trained using cross-entropy loss for predicted ac-
tions and mean-squared error for predicted observation rep-
resentations to jointly learn fobs, fact, and the sequence
model. At inference, the model is unrolled autoregressively
(with beam search as shown in Algo. 1), for prediction of
both action and observation representations. These design
choices are consistent with VLaMP.

A.2. GPT-3 Planner

Following Huang et al. [30], where the authors use a
LLM as zero-shot planners, we too also experiment with
prompting a frozen pretrained large language model (GPT-
3) for VPA. Specifically, a goal prompt and the current his-
tory of previously predicted actions (if available) are given
as a prompt to the GPT-3 model [8]. Then the next actions
for the given goal are generated autoregressively, consistent
with other baselines like VLaMP. As can be seen in Fig. 7,
this model has 2 stages: 1) next-action generation, and 2)
action retrieval. In the next-action generation stage, the
model is given the prompt and generates the next action. In
the action retrieval stage, the generated next action is com-
pared to all possible actions and the action that has the clos-
est similarity to the generated action, is chosen and placed
in the prompt. This step is required since we evaluate the
generated plans by comparing with ground truth actions for
the goal, where actions belong to a closed set as described
in Sec. 3.2. We use text-davinci-003 backend for genera-
tion, and text-embedding-ada-002 for embedding, which is
used in combination with cosine similarity to retrieve the
closest action. We perform our generation step zero-shot
without giving any examples, as GPT3 can already follow
the given prompt template, and we only generate one action

Algorithm 1: Inference for VLaMP and baselines
Data: encoded representations for history Hk = (h1, . . . , hn), beam size B

Result: plan for next l steps T̂ = ak+1, · · · , ak+l

1 H0 {Hk}; // Initialize the set of encoded trajectories with the history
2 for i = 1, . . . , l ; // predict actions for l steps
3 do
4 Hi {H ⇧ fenc(a) | H 2 Hi�1, a 2 A} ; // All single action extension at i-th step
5 �i {�(H) | H 2 Hi}; // score each trajectory

6 H̃i, �̃i top(B, sorted(Hi,�i)) ; // Keep B highest scoring trajectories

7 H̃
0
i H̃i;

8 for u = 1, . . . , � ; // Predict � observation representations autoregressively
9 do

10 H̃
u
i {H ⇧ fseq(H) | H 2 H̃

u�1
i }

11 end
12 Hi H̃

�
i ;

13 end
14 T̂ readout(l, top(1, sorted(H̃l, �̃l))) ; // Read out last l actions from the top scoring beam

!! "!

!emb
!map
!S3D

(!)!
!act !obs

(a) Encoders

LSTM

!! "! !!"#

"! "!"#

!seq

!!"#

(b) Sequence Model

Figure 8: DDN Implementation. The method utilizes
LSTM in the forecasting module for VPA. Consistent to and
analogous of VLaMP’s Fig. 3 in the main paper.

at the time – in an autoregressive manner.

A.3. ‘Most Probable Action’ baseline
In addition to the two intuitive, heuristic baselines, ran-

dom and random w/ goal, we also use a stronger heuristic
baseline called ‘most probable action’ baseline. Here we
describe this baseline in detail. The idea is to leverage the
fact that procedural activities are highly structured, i.e., cer-
tain actions occur together or occur in a certain order. We

bake this into a simple model with Markov assumption, that
the probability distribution of the next action ak+1 given
the current action ak to predict future actions. Akin to ran-
dom w/ goal baseline, we also evaluate a goal-conditioned
most probable action baseline, that uses a goal-specific set
of actions AG ⇢ A during sampling. Since these most
probable baselines, provide a probability distribution over
the actions, we can employ beam search (for fairness, with
the same beam size same as VLaMP) and pick the highest
scoring plan.

A.4. On Porting More Baselines
Next, we briefly include some procedural planning ap-

proaches and reasons why they cannot be directly leveraged
for rigorous and fair evaluation. Wherever possible, we in-
clude our best attempts to compare with them.
PlaTe [70]: This is similar to DDN, albeit with a Trans-
former [75] as the sequence model instead of an LSTM [28].
However, unlike DDN (and VLaMP), PlaTe uses separate
Transformer-based models for state and action prediction.
We adopt an approach that allowed us to tap into this while
being consistent and fair in evaluation. Therefore, instead
of directly adapting PlaTe for VPA as we did with DDN,
we provide an ablation on VLaMP, which uses a Trans-
former trained from scratch as the sequence model (row R
in Tab. 4).
P3IV [87]: This employs a significantly different model-
ing framework compared to DDN and PlaTe. Specifically,
P3IV leverages a memory-augmented transformer as the se-
quence model and a probabilistic generative model to cap-
ture the noise and variability in predicted sequences. The
authors report significant performance gain on the task of
procedure planning, over DDN and PlaTe. However, P3IV
relies on the visual observation of the goal already com-
pleted, even at inference time. This is necessary to condi-
tion their generative model towards encoding multiple plans

Dataset Method l = 1 l = 3 l = 4

nAcc SR mAcc mIOU SR mAcc mIOU

CrossTask

Random 0.9 ± 0.0 0.0 ± 0.0 0.9 ± 0.0 1.5 ± 0.0 0.0 ± 0.0 0.9 ± 0.0 1.9 ± 0.0
Random w/ goal 13.2 ± 0.2 0.3 ± 0.0 13.4 ± 0.0 23.6 ± 0.1 0.0 ± 0.0 12.7 ± 0.0 27.8 ± 0.1
DDN [9] 33.4 ± 0.5 6.8 ± 0.3 25.8 ± 0.5 35.2 ± 0.6 3.6 ± 0.2 24.1 ± 0.4 37.0 ± 0.4
VLaMP (ours) 50.6 ± 1.4 10.3 ± 0.4 35.3 ± 1.1 44.0 ± 1.0 4.4 ± 0.2 31.7 ± 1.0 43.4 ± 0.9

COIN

Random 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.0
Random w/ goal 24.5 ± 0.2 1.7 ± 0.0 21.4 ± 0.1 42.7 ± 0.1 0.3 ± 0.0 20.1 ± 0.1 47.7 ± 0.1
DDN [9] 29.3 ± 0.3 10.1 ± 0.4 22.3 ± 0.4 32.2 ± 0.6 7.0 ± 0.3 21.0 ± 0.4 37.3 ± 0.3
VLaMP (ours) 45.2 ± 0.8 18.3 ± 0.1 39.2 ± 0.3 56.6 ± 0.5 9.0 ± 0.3 35.2 ± 0.2 54.2 ± 0.5

Table 5: Expanded version of Tab. 3. The mean ± ste. (standard error of mean) for various planning metrics obtained
using 5 runs with different random seed are shown for VLaMP and various baselines. Note: the models that don’t change
with random seeds are omitted. Note that the action history and observations are provided using the output of the action
segmentation model and hence are noisy compared to the ground truth history.

beam
size (B)

per node
beam size (b) GPU GPU

memory

Num
GPUs

(inference)

Num
GPUs

(training)

Avg. time
(training)

Avg. time
(inference)

batch
size

(training)

CrossTask 10 3 NVIDIA A100 80GB 1 GPU/model 1 GPU/model 2 s/batch 7.4 s/example 4
COIN 3 3 NVIDIA A100 80GB 3 GPUs/model 1 GPU/model 2 s/batch 6.1 s/example 4

Table 6: Hyperparameters and compute information for VLaMP.

from start to goal. Since P3IV needs the observations of
goal completed, it is incompatible to the motivation and the
very premise of VPA.

B. Inference for VPA (Alg. 1)

In order to predict a sequence of next actions, we run the
sequence model, autoregressively to predict both the action
and observation tokens, with beam search on the action se-
quence. The inference algorithm is detailed in Algo. 1. We
first encode the history into a sequence of representations
Hk as described in Sec. 4.3, and initialize our set of en-
coder trajectories H0 using this single representation trajec-
tory (line 1 in Alg. 1). Then we start the inference procedure
that runs for l steps (line 2). At each step i we first infer the
next action and then also predict the representations for the
observation that follows it. To do the former, each represen-
tation trajectory in Hi is extended with the representations
of each action in the action set A (line 4). At this point, if,
for instance, Hi�1 had n trajectories, then after line 4, Hi

will have n⇥ |A| trajectories. This is a temporary blow-up–
at line 6, we score all n⇥ |A| trajectories and keep only top
B trajectories. Here, to balance diversity, we keep no more
than b trajectories with exactly same history. The parameter
b is usually referred to as per node beam size. Once we have
B trajectories in Hi, we auto-regressively predict the next
� tokens corresponding to the next observation, thus com-
pleting one out of the l steps of inference. This process it
repeated l times to generate a plan consisting of l actions.

We make this process efficient by storing the hidden state
of the transformer and limiting the forward pass only on the
new representations at each step. This is a common practice
for transformer based models in NLP. Due to beam search,
the inference process is slower than training as shown in
Tab. 6.

C. VLaMP Training (Tab. 6)
Unlike inference where a video with K steps results into

K � 4 examples, during training, like with language model
pre-training, we use a single forward pass to compute loss
for all tokens. Moreover, inference also uses beam search
making it more memory intensive. Thus, the training is
much faster and cheaper as compared to the inference. The
details of the compute used for each training and inference
run is shown in Tab. 6.

D. Comparison to Ego4D LTA Benchmark
In prior work, Ego4D’s Long-term Action Anticipa-

tion [25] benchmark task is also highly relevant to VPA.
Hence, we dedicate a discussion of similarities and con-
trasts. We hope this helps the reader accurately place these
two tasks in our community’s diverse research goals and di-
rections.

Consistent to VPA, LTA also focuses on predicting a se-
quence of future actions given prior visual context for free-
form human interaction. Unlike LTA, VPA specifically en-
tails goal-oriented activities and indeed a natural language

(a) AG across COIN and CrossTask (b) Mean accuracy (mAcc) averaged across goals (c) Number of samples for each prefix length (length
of history)

Figure 9: Zooming into the tails. (a) Average size of goal-specific action set AG across COIN and CrossTask datasets. COIN
has a relatively smaller mean than CrossTask, which reduces the difficulty of VPA on COIN. (b) Mean accuracy (mAcc) vs.
the history length k of various goals from CrossTask. Interestingly, plan generation for goals with longer history is difficult
and prone to higher errors as reflected in the mAcc (reasoning included in Sec. E). (c) Longer sequences are also less frequent
in the dataset. This contributes to high variance in performance for such sequences.

goal prompt is of key importance to the definition of VPA.
So while the forecasting suite in Ego4D aspires to under-
stand human motion, we are instead keen to create assistive
agents that can interact and assist humans in their tasks.

Since LTA does not allow access or model the user’s
goal, recent approaches for LTA including the winning
model for Ego4D 2022 LTA challenge – ICVAE [51] have
to go via an additional step of inferring the intention of the
user. This provides more impetus to our goal-conditioned
and human-assitive design choice and motivation for VPA.
This is empirically backed as well, as we show in ablation
(row 1 in Tab. 4) – goal-conditioning is crucial for VPA.

We also evaluated VLaMP on Ego4D’s LTA benchmark.
Both the VideoCLIP-based segmentation module and the
forecasting module in VLaMP were finetuned on LTA’s
train split. Table 7 shows the performance of VLaMP on
the validation split of LTA for l = 20 future actions, follow-
ing the LTA task definition. The extremely long future hori-
zon of prediction makes beam search impractical. Hence,
we don’t perform beam search with VLaMP for this exper-
iment. VLaMP outperforms the best performing LTA base-
line, which uses a visual encoder followed by a transformer-
based aggregator [25]. While Ego4D used Slowfast encoder
for the LTA baseline, we perform this experiment using S3D
encoder for a fair comparison with VLaMP.

E. Additional Quantitative Results
Most probable action baseline. As shown in Table 3, the
performance of the heuristic baselines – most probable ac-
tion w/ goal, and Random w/ goal (i.e. the baselines with
actions restricted to the set of actions seen with the corre-
sponding goal) is quite high for COIN dataset. We find that

ED@(l=20)

Model Encoder Verb Noun Action

VLaMP (ours) S3D 0.73 0.772 0.932
LTA Baseline [25] S3D 0.745 0.779 0.941

Table 7: VLaMP on Ego4D LTA’s validation split. Edit
distance for verb, noun, action prediction for future 20 steps
is shown (lower the better).

this is due to the relatively small cardinality of the action set
for goals in COIN, i.e. the average size of AG for different
Gs as discussed below.
Action distribution analysis. We dig deeper into the above
finding in Fig. 9(a). Particularly, we plot the distribution of
number of actions |AG| w.r.t G and find them to be quite
different in COIN vs. CrossTask. Here, |AG| 2 A repre-
sents the set of goal-specific actions from the larger set of
actions A for each dataset. Specifically, the average size of
AG is 4.3 and 7.3, respectively for COIN and CrossTask,
reducing the difficulty of VPA in COIN. Also, notice the
long-tails in the distribution of CrossTask, making it even
more challenging.
Zooming into the tails and higher errors. In Fig. 9(b),
we plot the number of steps in the history (k) vs. the mean
accuracy (mAcc), averaged across all goals in CrossTask on
VPA. We find that plan generation with longer history leads
to higher errors as well as higher variance in performance.
We believe this trend emerges due to two reasons.

First, the presence of repetitive steps in certain goals
is high in longer history. Moreover, we find that longer
the history the wider is the space of possible plans (intu-

add onion add kimchi stir mixture stir mixture
pour oil

add onion stir mixture add kimchi add rice

!:
! ":

raise jack lower jack raise jack lower jack
brake on

raise jack lower jack <eoa> <eoa>

!:
! ":

raise jack lower jack

Goal: Jack up a car

Goal: Make kimchi fried rice

Figure 10: Qualitative Error Analysis for VPA. Ground truth plan T and the predicted plan T̂ by VLaMP for the goal
prompt of “making kimchi fried rice” (top) and “ Jack up the car” (bottom). Errors made by VLaMP can be attributed to
repetitions in actions. Details are included in Sec. E. Briefly, (1) uncertainty in the number of times actions are repeated and
(2) existence of equivalent plans for achieving the same goal, are contribute heavily to the errors for VPA. In the top, note
the action ‘stir mixture’ is repeated consecutively in the ground truth, but the model predicts it only once. Moreover, both
the ground truth and the predicted plans have correct steps for adding kimchi and onion but their order is different. Similar
repetitions result into errors for the goal of jacking up the car.

14%

15%

38%

28%

32%

55%

% drop in performance

Figure 11: Effect of segmentation errors. The figure
zooms in on two metrics mAcc and nAcc from Figure
5. As the classification error in segmentation, which is
shown along the x-axis increases, the performance gap be-
tween the model with access to observation history VLaMP
(G,Ak, Ok) and that with access only to the action history
VLaMP (G,Ak) increases.

itively, multiple modes exist in the plan distribution land-
scape), which lead to higher variance. We illustrate this in
Fig. 10 with a qualitative result, for the example goal of
‘making kimchi fried rice’, the action ‘stir mixture’ repeat-
edly occurs between various actions involving the addition
of ingredients like onion, kimchi, rice, etc. However, the
number of times stir mixture occurs varies sporadically. For
instance, for the ground truth plan in the first example in
Fig. 10, the ‘stir mixture’ is missing between ‘add onion’
and ‘add kimchi’, but occurs twice after ‘add kimchi’, be-
fore adding other ingredients. Due to this sporadic vari-
ability, the predicted plan gets IoU of 75% on this exam-
ple, but mAcc and SR of 25% and 0, respectively. Another
common source of errors is repetition of sub-sequences of
actions depending on the visual signal in the ground truth.

Specifically, as seen in the second example in Fig. 10, which
shows an action trajectory for the goal of ‘jack up a car’, the
sub-sequence (‘raise jack’, ‘lower jack’), is repeated three
times. In this example, the repetition is due to overshooting
the target height of the raised car. However, for a planning
model, that only sees the visual input till k = 3 or time
tk, it is not possible to guess whether the car will overshoot
(undershoot, respectively) the target height after the next
application of ‘raise jack’ (‘lower jack’, respectively).

Second, as analysed in Fig. 9(c), longer trajectories are
exponentially less frequent in the dataset – forming the tail
of the data distribution of action sequences in the dataset.
This also contributes to high variance in performance for
such sequences.
Segmentation errors. As we note in Sec. 5.3 and Fig. 5
of the main paper, segmentation errors are detrimental
for VPA. As the mis-classification error in the segmenta-
tion model increases, the difference in the performance of
VLaMP (G,Ak, Ok), i.e. the model with access to observa-
tion history, and VLaMP (G,Ak), the model working only
on the action history, increases. A detailed version of Fig. 5
is included in Fig. 11 with a focus on mean accuracy (mAcc)
and next-step accuracy (nAcc)6. Moreover, since the obser-
vation history has higher influence on predicting the imme-
diate next action as discussed in Sec. 5.3, the performance
drop due to segmentation classification error is higher in
nAcc as compared to mAcc.

6Refer to the definitions of metrics in Sec. 3.2

