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Overview

The supplementary material contains:

• Details of training losses

• Details of domain translation architecture: Figure S1

• Ablation study with and without MFE module for Domain Translation: Figure S2

• Restoration network ablation study: Figure S3 and Table S1

• Domain features alignment orders: Figure S4

1 Details of Training Losses

1.1 Domain Translation

The weather degraded image (I) is used as input to the domain translation network which produces
the domain translated output (IDϵ(D1,D2,D3)). These translated images are similar to hazy (IH ), rain
with veil (IRv), and snow with veil (ISv), respectively. Adversarial learning is adopted for domain
translation network training. Along with L1 loss, adversarial loss (LA) is calculated as:

LA = max
Dd

min
Gd

E[log(Dd(I, IT))] + E[log(1−Dd(I,Gd(I)))] (1)

where, Dd and Gd are the domain-translation discriminator and generator respectively,
ITϵ(H,Rv,Sv) are the original target domains of respective translated imagesGd(I) = IDϵ(D1,D2,D3).
To guide the network for textural and structural information, the perceptual loss (LVd

) is calculated
between the restored and target image by passing them through the pre-trained VGG19 model [1]
as:

LV =

S∑
s=1

∥ψs(IT)− ψs(ID)∥1 (2)

where, ψs are the feature maps (sϵ(1;S)) of the VGG19 model. Further, the contrastive loss [2]
is used to maximize the difference between the generated image (restored image) and the weather
degraded input in a common latent feature space, and minimize the difference between generated
image and ground-truth image in the common latent feature space. The contrastive loss (Lc) is
defined as:

Lc(I, ID, IT) =
S∑

s=1

βi ∗
∥ψi(IT)− ψi(ID)∥1
∥ψi(I)− ψi(ID)∥1

(3)

where, βi∗ is the weight given to each ith layer ψi of a pretrained model of VGG-19. Further, the
style of target image is matched with translated image through mean and standard deviation as:
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Ls =

S∑
s=1

∥σ(ψs(IT))− σ(ψs(ID))∥1+

S∑
s=1

∥µ(ψs(IT))− µ(ψs(ID))∥1

(4)

where, σ and µ represents mean and standard deviation of target and translated image. Therefore,
the total loss (Ld) is:

Ld(Di,Ti) = λ1L1d + λ2LAd
+ λ3LVd

+ λ4LCd
+ λ5Lsd (5)

where, the weights λkϵ(1,5) for each loss are set empirically (λ1 = 1, λ2 = 0.01, λ3 = 0.2,
λ4 = 0.2, λ5 = 0.2). The domain translation architecture is trained for each domain (ID1 , ID2 , ID3)
separately with this provided setting.

1.2 Image Restoration Losses

The weather degraded image (I) is used as input and output of the network is restored image (Ig).
The proposed network is required to generate the restored image similar to the respective clean
image (Ic). The L1 loss is used to optimize the network for better reconstruction. The adversarial
loss is the min-max problem between generator and discriminator, respectively and given as:

LA = max
Dr

min
Gr

E[log(Dr(I, Ic))] + E[log(1−Dr(I,Gr(I, ID)))] (6)

where, Dr and Gr are the restoration discriminator and generator respectively. To guide the net-
work for textural and structural information, the perceptual loss (LV ) is calculated between the
restored and target image by passing them through the pre-trained VGG19 model [1] as:

LV =
S∑

s=1

∥ψs(Ic)− ψs(Ig)∥1 (7)

where, ψs are the feature maps (sϵ(1;S)) of the VGG19 model. Further, the contrastive loss [2]
is used to maximize the difference between the generated image (restored image) and the weather
degraded input in a common latent feature space, and minimize the difference between generated
image and ground-truth image in the common latent feature space. The contrastive loss (Lc) is
defined as:

Lc(I, Ig, IT ) =
S∑

s=1

βi ∗
∥ψi(Ic)− ψi(Ig)∥1
∥ψi(I)− ψi(Ig)∥1

(8)

where, βi∗ is the weight given to each ith layer ψi of a pretrained model of VGG-19. So, the total
loss (Lr) is:

Lr(Ig, Ic) = λ1L1 + λ2LA + λ3LV + λ4Lc (9)

where, the weights λkϵ(1,4) for each loss are set empirically (λ1 = 1, λ2 = 0.01, λ3 = 0.4,
λ4 = 0.2).
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2 Details of domain translation architecture

Figure S 1: Overview of the domain translation architecture.

3 Ablation study with and without MFE module for Domain Trans-
lation

We provided the visual results of domain translation with and without multi-attentive feature ex-
traction in Figure S2 for your reference.

Figure S 2: Ablation study on domain translation with and without MFE module (see zoomed
version of patch).
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4 Restoration network ablation study analysis on SOTS and CSD
database

Table S 1: Ablation study on SOTS and CSD databases
Module SOTS CSD

Baseline (BS) 28.63/0.921 28.32/0.879
BS + IL (Net-1) 33.23/0.934 29.01/0.899

BS + IL + PMDA (Net-2) 35.46/0.978 31.76/0.932
BS + IL + PMDA + CMA (Proposed) 36.26/ 0.987 32.95/ 0.940

Figure S 3: Visual results for the ablation study (see Table R2 for combination).

5 Ablation study with domain feature alignment orders

We can see that the HRS (Haze → Rain → Snow) alignment order helps to achieve better
restoration as compared to RSH (Rain→ Snow → Haze) and SHR (Snow → Haze→ Rain)
alignment orders. Based on our experience, aligning the features in the order of degradations
that are increasingly “locally distinct” leads to better restoration. The haze are the least locally
distinct as they usually come as a global patch; even though rain have long streaks, they are more
locally distinct than haze, and the snow are the most locally distinct due to being small patches-like
degradation.

Figure S 4: Visual results on domain features different alignment orders for image restoration.
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