
GlueStick: Robust Image Matching by Sticking Points and Lines Together
Supplementary Material

In the following, we provide additional details regard-
ing GlueStick, our point-line matcher. Appendix A offers
a visualization of the generation of our line ground truth.
Appendix B gives additional insights and ablation studies
motivating our choices. Appendix C specifies some experi-
mental details to reproduce our experiments and brings ad-
ditional results. Appendix D shows matching results, as
well as failure cases of our method. Finally, Appendix E
provides visualizations of the attention for various kinds of
nodes.

A. Ground Truth Generation
Designing a line matching ground truth (GT) is challeng-

ing, due to partial occlusions and lack of repeatability of
line detectors. We provide here some visualizations of the
GT generation process.

Fig. 1 shows an example of the ground truth between two
images. Line segments can be either MATCHED (green),
UNMATCHED (red), or IGNORED (blue). The latter case
happens when the depth along the line is too uncertain or
when its reprojection in the other image is occluded. The
generation process is also illustrated in Fig. 2 for one pair
of line segments. The advantage of the proposed method
is that it recovers a large number of matches for each pair
of images, providing a strong matching signal. In compar-
ison to the method proposed in [1] which does robust 3D
reconstruction of line segments, our method is faster and
simpler. By avoiding the 3D line reconstruction step, we
can train in larger scenes with potentially noisy depth, like
the MegaDepth dataset [10].

B. Additional Insights on GlueStick
In this section, we give extra insights and motivations for

our design choices.
Choice of the Line Segment Detector. In all our train-
ing and experiments, we used the Line Segment Detector
(LSD) [7] to extract line segments. For a certain applica-
tion, such as indoor wireframe parsing [8], learned meth-
ods largely overtake classic ones [5, 20, 23, 24]. However,
learned methods struggle to generalize this power to other
contexts, tasks, or types of images. For this reason, we have

(a) GT line assignations, shown as MATCHED, UNMATCHED, and
IGNORED.

(b) Each color identifies a match (i, j) ∈ Ml of the GT.

Figure 1: Ground truth (GT) line assignations. Exam-
ples of GT line matches. Note that blue lines are located
in uncertain regions and depth discontinuities, and they are
ignored during training.

chosen LSD as the generic method to train GlueStick. Fur-
thermore, we believe that our line pre-processing, turning
an unordered set of lines into a connected graph, is bene-
ficial to make the endpoints more repeatable across views,
thus potentially making LSD more repeatable.

We ran a small experiment to compute the line repeata-
bility of different line detectors on the HPatches [2] and
ETH3D [18] datasets. We define line repeatability for a
pair of images as the percentage between the number of
line correspondences and the number of lines in the pair
of images [11]. We establish line correspondences between
images with the protocol defined in Sec. 3.4 of the main
paper and Appendix A. Tab. 1 shows that the learned base-
line F-Clip [5] obtains the highest repeatability, but detects
few lines, due to the fact that it was trained on the ground
truth lines of the Wireframe dataset [8]. On the contrary,
LSD provides the best trade-off in terms of repeatability and



(a) 3D Visualization of a scene in ETH3D [18], with the depth associated with each
point and the camera poses.

(b) GT Matching result

Figure 2: Visualization of the ground truth (GT) generation. To check if a pair of line segments lAi and lBj correspond
to each other, we sample points along the segment: cyan points in the right image of (a). Points are lifted using depth and
re-projected in the second image: green points in the left image of (a). We use the number of points that lie close to the
segment in the second image to build each entry CB

i,j of the cost matrix. Together with the reciprocal matrix CA we define
an assignation problem whose solution is our GT shown in (b).

HPatches ETH3D

#Lines Rep. (%) #Lines Rep. (%)

LSD [7] 307 68.72 578 47.49
ELSED [20] 243 64.66 464 48.03
HAWP [24] 366 60.86 420 38.69
SOLD2 [13] 167 65.49 332 39.86
F-Clip [5] 139 72.91 444 50.90
LETR [23] 95 70.65 311 47.70

Table 1: Line segment detection comparison. We com-
pare different line segment detectors in terms of their re-
peatability in the HPatches [2] and ETH3D [18] datasets.

number of lines. Thus, this good trade-off, as well as its low
localization error and versatility, make LSD a very suitable
choice for our approach.

We provide in Fig. 4 additional visualizations of line
segments for two traditional methods: LSD [7] and
ELSED [20], and two learned methods: SOLD2 [13] and
HAWP [24]. While traditional ones sometimes detect noisy
lines (for example in the sky), learned ones are often biased
towards their training set and do not generalize very well to
different settings, such as outdoor images.

However, is important for GlueStick to generalize and
perform well with other line segment detectors. In Fig. 3

we run GlueStick using either LSD or SOLD2 [13] lines,
and we evaluate the precision-recall of both methods on the
ETH3D dataset [18]. The latter are generic lines extracted
by a deep network, with strong repeatability and low local-
ization error [13]. It can be seen from the precision-recall
curves that 1) our GlueStick model trained on LSD lines
is able to generalize to other lines such as SOLD2 [13],
and 2) the performance is slightly better with LSD lines.
This is reasonable, since GlueStick was already trained on
these lines. In summary, we chose LSD as base detector
for downstream tasks since it remains one of the most accu-
rate detector currently available, by directly relying on the
image gradient at a sub-pixel level.

Effect of the Fine-tuning. Again in Fig. 3, we compare our
final GlueStick model with its pre-trained version on homo-
graphies, GlueStick - H. The plot shows that pre-training on
homographies is already sufficient to get very high perfor-
mance on ETH3D - better than the previous state-of-the-art
line matchers. Fine-tuning on MegaDepth [10] with real
viewpoint changes can however further improve the robust-
ness of our matcher, as demonstrated by the stronger per-
formance of the final model.

Dependence on Point Matches. When jointly matching
two kinds of features, one caveat is often that one type of



Figure 3: Additional ablation study on the ETH3D
dataset [18]. We report the precision-recall curve of the
line matching, as well as Average Precision (AP) in the
legend. Our final GlueStick model running with LSD [7]
lines is compared to its pre-trained version on homogra-
phies (GlueStick - H), and the final model using SOLD2

lines [13] (GlueStick - SOLD2 lines).

feature takes the lead and the other relies mainly on the first
one. While we know from SuperGlue [17] that point-only
matching is already very strong on its own, we show here
that our architecture is very robust to the absence of key-
points and that line-only matching is still possible. We ran
an evaluation of the precision, recall, and average precision
(AP) of the line matching on 1000 validation images of our
homography dataset (images taken from the 1M distractor
images of [14]), and tested different maximum numbers of
keypoints per image. The results showed in Fig. 5, high-
light that our line matching is extremely robust to the lack of
keypoints. The precision remains indeed constant, and the
recall and AP are decreasing by at most 5% when switch-
ing from 1000 keypoints to no keypoints. Thus, this study
confirms that our matcher can be used in texture-less areas
where no keypoints are present, and is still able to match
lines with high accuracy.
Impact of the Line Length. While we adopted a line repre-
sentation based on the endpoints, one may wonder whether
GlueStick can handle very long lines, and how it performs
with respect to the line length. We studied this on the
ETH3D [18] by categorising lines into three categories of
length (in pixels): Short ([0, 50)), Medium ([50, 150)), and
Long ([150,+∞)). The results are shown in Fig. 6. It can
be seen that the best performance is obtained for long lines,
showing that GlueStick is still able to match lines even with-
out context in the middle of the line. This result is due to
the fact that long lines are more stable across views, while
short ones are often noisy and not very repeatable.
Robustness to Small Image Overlaps. The image over-

lap and scale changes between images can play a large
role in matching. To study the effect of image overlap on
GlueStick, we revisited our line matching experiment on
the ETH3D dataset [18] and separated the pairs of images
into three categories of image overlap: Small ([0, 0.33)),
Medium ([0.33, 0.66)), and Large ([0.66, 1]). Overlap is de-
fined as the proportion of pixels falling into the other image
after reprojection. It is computed symmetrically between
the two images, and the minimum of the two values is kept.
Results are available in Fig. 7. While the performance natu-
rally decreases with smaller overlaps, GlueStick maintains
a strong performance on such hard cases.

C. Experimental Details

In this section, we first provide additional baselines to the
experiment on ScanNet for homography and relative pose
estimation. Secondly, we give details and visualizations of
the pure rotation estimation between two image pairs, and
its application to image stitching. Thirdly, we provide a
comparison of methods on homography estimation on the
HPatches dataset [2]. Finally, we give the full results of
visual localization on the 7Scenes dataset [19], though the
performance on most scenes is already saturated.

C.1. Relative Pose through Homographies

The experiment in Tab. 1 of the main paper was meant to
evaluate the quality of homographies retrieved from points,
lines or points+lines features. Homographies were evalu-
ated by decomposing into the corresponding relative pose
and evaluating the latter on the ScanNet dataset [4]. For
the sake of completeness, we also report here the results
that would be obtained with a more efficient method to ob-
tain the relative pose: the 5-point algorithm to obtain the
essential matrix [12], later decomposed as a relative pose.
Tab. 2 demonstrates that the quality of relative poses re-
trieved through essential matrices is much higher than with
homographies - as could be expected. GlueStick remains
nevertheless the top performing method among all base-
lines. Note that we use here the outdoor models for all
methods, for fairness reasons as GlueStick was only trained
on outdoor data.

C.2. Pure Rotation Estimation

In this section, we describe the details of the pure rota-
tion algorithm used to perform the experiment of Sec. 4.4.2
of the main paper. Inside a Hybrid RANSAC [3], we de-
sign minimal and least square solvers to estimate the rota-
tion based on points, lines, or a combination of both.

Images are cropped from the panorama images of
SUN360 [22] and projected with a calibration matrix K ∈
R3×3. Fig. 8 shows some examples. The relation between



(a) LSD [7] (b) ELSED [20] (c) SOLD2[13] (d) HAWP [24]

Figure 4: Comparison of line segment detectors. Learned methods such as SOLD2 [13] and HAWP [24] may not generalize
well in all situations, such as outdoors. Traditional ones such as LSD [7] and ELSED [20] produce a lot of overlapping
segments and sometimes noisy ones. We decided to use LSD for its high versatility and accuracy.
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Figure 5: Analysis of the dependence on keypoints. We
run GlueStick on 1000 image pairs warped by a homog-
raphy (taken from the 1M distractor images of [14]), with
varying numbers of keypoints, and report the precision, re-
call and Average Precision (AP) of the line matching. Glue-
Stick robustly matches lines even when few or no keypoints
are present.
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Figure 6: Analysis of the impact of line length. We run
GlueStick on the ETH3D dataset [18] and evaluate sepa-
rately the matching of Short, Medium, and Long lines. The
best performance is obtained for long lines, as they are more
stable than short ones. GlueStick can thus match long lines
even with an endpoint representation.

both images is defined by:

xB = KRK−1xA, (1)

where R ∈ SO(3) is the rotation matrix between the cam-
eras. Thus, we can calibrate the features detected on each
image, multiplying them by K−1. This way, we only have
to robustly estimate the 3 Degrees-of-Freedom (DoF) of the
rotation.

Point features are sampled uniformly, and lines are sam-
pled proportionally to the square root of their length to give
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Figure 7: Analysis of the impact of the image overlap. We
run GlueStick on the ETH3D dataset [18] and classify im-
age pairs into three categories: Small, Medium, and Large
overlap. While the performance of GlueStick decreases
with smaller overlaps, it is able to maintain a high perfor-
mance for all kinds of overlaps.

Pose error (↓) Pose AUC (↑)

Pose from H
SuperGlue (SG) [17] 18.1 15.6 / 29.8 / 39.4
LoFTR [21] 16.8 15.8 / 30.9 / 41.4
GlueStick 14.1 19.3 / 35.4 / 46.0

Pose from E
SuperGlue (SG) [17] 8.6 30.5 / 46.0 / 54.1
LoFTR [21] 11.7 23.6 / 39.6 / 48.4
GlueStick 8.4 30.9 / 46.8 / 55.1

Table 2: Using essential matrices instead of homogra-
phies on ScanNet [4]. While our experiment on ScanNet
is meant to evaluate homographies, we display here the re-
sults that would be obtained when using essential matrices
to get a relative pose, instead of homographies. We report
the median pose error in degrees, as well as the AUC at
10◦ / 20◦ / 30◦ error. Essential matrices are naturally more
robust and obtain better results when evaluated on relative
pose estimation.

priority to larger lines. The probability of choosing one type
of feature is proportional to its number of matches. For ex-
ample, if a pair has 60 point matches and 40 line matches,
the probability of choosing a point is 60% and 40% for
lines.

The minimal solver randomly chooses 2 feature matches
(point-point, point-line, or line-line) and estimates the ro-
tation based on them. This can be seen as aligning 2 sets
of 3D vectors. Homogeneous points are already 3D vectors
going from the camera center to the plane Z = 1. To get a
vector from a line segment with homogeneous endpoints xs

and xe we use its line-plane normal n = xs × xe. To make
the method invariant to the order of the endpoints, we force
the normals of the segments to have a positive dot product.



Rotation error (↓) AUC (↑)

Avg Med 0.25º 0.5º 1º 2º 5º 10º

LineTR [25] 60.37 10.80 0.239 0.307 0.366 0.414 0.455 0.474
LBD [26] 19.57 0.054 0.593 0.681 0.736 0.768 0.790 0.799
SOLD2 [13] 23.74 0.308 0.232 0.384 0.515 0.609 0.682 0.713
L2D2 [1] 18.31 0.056 0.578 0.667 0.725 0.765 0.795 0.808
GlueStick-L 8.79 0.070 0.579 0.701 0.780 0.830 0.869 0.885

SG [17] 0.135 0.052 0.730 0.860 0.929 0.964 0.985 0.992
GlueStick-P 0.230 0.052 0.729 0.860 0.928 0.963 0.984 0.991

PL-Loc [25] 0.338 0.050 0.733 0.859 0.927 0.961 0.982 0.989
GlueStick-PL 0.327 0.039 0.789 0.890 0.943 0.970 0.986 0.991

Table 3: Pure rotation estimation on SUN360 [22].
We estimate a rotation based on point-only, line-only, or
points+lines matches. We report the average and median ro-
tation error in degrees, as well as the Area Under the Curve
(AUC) at 0.25 / 0.5 / 1 / 2 / 5 / 10 degrees error.

This simple heuristic works as long as the sought rotation is
less than 180◦. Therefore, we can obtain a 3D vector from
any of the types of features. For two (or more) correspon-
dences, the optimal rotation can then be found with SVD
using the Kabsch algorithm [9].

We provide a more extensive table of results than in the
main paper in Tab. 3, as well as visual examples of the point
and line matches obtained by GlueStick, and the resulting
image stitching output in Fig. 8.

C.3. Homography Estimation in HPatches

HPatches [2] is one of the most frequently used datasets
to evaluate image matching. It contains 108 sequences
where the scene contains only one dominant plane, with 6
images per sequence. Each sequence has either illumination
of viewpoint changes. Similarly as in [17], we compute
a homography from point and/or line correspondences and
RANSAC, and compute the Area Under the Curve (AUC)
of the reprojection error of the four image corners. We re-
port the results for thresholds 3 / 5 / 10 pixels. We also
compute the precision and recall of the ground truth (GT)
matches obtained by the GT homography.

We report the results in Tab. 4 and Fig. 9. HPatches is
clearly saturated and the precision/recall metrics are already
very high for point-based methods. Note the strong perfor-
mance of GlueStick on line matching, with an increase by
nearly 10% in precision compared to the previous state of
the art. Regarding point-based methods and homography
scores, GlueStick obtains a very similar performance as the
previous point matchers SuperGlue [17] and LoFTR [21],
and ranks first (with a very small margin) in terms of ho-
mography estimation. In addition to the fact that HPatches
is saturated, it contains also very few structural lines that
could have been useful to refine the homography fitting.
Thus, the improvement brought by line segments is not sig-
nificant here.

AUC (↑) Points (↑) Lines (↑)

3px 5px 10px P R P R

L

L2D2 [1] 43.73 55.98 69.39 - - 55.55 38.76
SOLD2 [13] 26.60 36.41 48.82 - - 80.57 77.43
LineTR [25] 42.90 55.74 69.26 - - 78.78 58.74
LBD [26] 46.82 59.13 71.82 - - 82.73 56.38
GlueStick-L 46.61 61.45 76.32 - - 90.27 76.69

P
SuperGlue [17] 66.21 77.77 88.05 98.85 97.44 - -
LoFTR [21] 66.15 75.28 84.54 97.60 99.38 - -
GlueStick-P 65.88 77.41 87.72 98.85 97.08 - -

P+L PL-Loc [25] 60.03 71.44 83.08 90.80 77.60 80.33 50.35
GlueStick-PL 66.88 78.14 88.12 98.00 94.86 89.54 80.44

Table 4: Homography estimation in HPatches [2]. We
report the Area Under the Curve (AUC) of the cumulative
error curve generated by the re-projection error of the four
image corners at different thresholds (3px, 5px, 10px), as
well as the precision (P) and recall (R) of the matches.

C.4. Visual Localization on the Full 7Scenes Dataset

As stated in the main paper, 7Scenes [19] is a rather
small-scale dataset for visual localization, which is already
largely saturated for point-based methods. Adding line seg-
ments into the pipeline can improve the results only in a
few scenes such as Fire, Office and mostly on Stairs. We
demonstrate this in Tab. 5, where we used the same setup as
described in the main paper. While all methods obtain close
results on such a saturated dataset, GlueStick is slightly
ahead of the baselines, and largely outperforms them on the
most challenging scene, Stairs.

D. Qualitative Examples
D.1. Feature Matches

Fig. 10 displays some examples of line matching on the
ETH3D dataset [18]. We plot in green the correct matches
and in red the incorrect ones. Thanks to its spatial reason-
ing in the GNN and context-awareness, GlueStick is consis-
tently matching more lines and with a higher precision than
previous works. This is in particular true for scenes with
repeated structures, such as the one in the right column,
where the descriptors of SOLD2[13] and L2D2[1] do not
have context from neighboring lines, and can only match a
few lines.

D.2. Visualization of the Camera Pose Estimation

We visualize the reprojection of points and lines on the
scene Stairs of the 7Scenes dataset [19] in Fig. 11. We plot
in green the points and lines that were originally detected
in 2D, and re-project in red the corresponding 3D features
using the estimated camera pose. The reprojections of Glue-
Stick are almost perfectly aligned compared to the ones of
hloc [16, 15], highlighting the quality of the poses retrieved



(a) Point matches (b) Line matches (c) Image stitching results

Figure 8: Examples of GlueStick matches on image pairs of SUN360 [22]. We provide the point and line matches, as well
as the stitching of the two images using the resulting matches.

Points Points + Lines

SuperGlue [17] LoFTR [21] GlueStick - P SOLD2 [13] LineTR [25] L2D2 [1] SG + Endpts GlueStick - PL

Chess 2.4 / 0.81 / 94.5 2.5 / 0.86 / 93.8 2.4 / 0.80 / 94.3 2.4 / 0.82 / 94.4 2.4 / 0.81 / 94.5 2.4 / 0.83 / 94.5 2.4 / 0.82 / 94.6 2.4 / 0.82 / 94.5
Fire 1.9 / 0.76 / 96.4 1.7 / 0.66 / 96.8 2.0 / 0.78 / 96.6 1.6 / 0.69 / 96.8 1.6 / 0.69 / 97.0 1.6 / 0.69 / 96.4 1.7 / 0.69 / 97.2 1.7 / 0.69 / 97.4

Heads 1.1 / 0.74 / 99.0 1.1 / 0.78 / 98.2 1.1 / 0.74 / 99.2 1.0 / 0.72 / 99.4 1.1 / 0.75 / 99.1 1.0 / 0.73 / 99.3 1.1 / 0.74 / 99.2 1.0 / 0.74 / 99.4
Office 2.7 / 0.83 / 83.9 2.7 / 0.83 / 82.0 2.7 / 0.83 / 83.6 2.6 / 0.80 / 84.7 2.6 / 0.79 / 84.4 2.6 / 0.81 / 83.9 2.6 / 0.79 / 84.4 2.6 / 0.79 / 84.6

Pumpkin 4.0 / 1.05 / 62.0 3.9 / 1.12 / 62.4 3.9 / 1.04 / 62.2 4.0 / 1.07 / 60.2 4.0 / 1.08 / 61.5 4.0 / 1.05 / 61.3 4.0 / 1.06 / 61.2 4.0 / 1.06 / 61.5
Red kitchen 3.3 / 1.12 / 72.5 3.3 / 1.14 / 73.8 3.3 / 1.12 / 72.8 3.2 / 1.15 / 72.6 3.3 / 1.15 / 72.6 3.2 / 1.14 / 72.9 3.2 / 1.14 / 72.8 3.2 / 1.13 / 73.0

Stairs 4.7 / 1.25 / 53.4 4.4 / 0.95 / 53.9 4.4 / 1.21 / 55.4 3.2 / 0.83 / 75.8 3.7 / 1.02 / 66.6 4.1 / 1.15 / 55.8 3.1 / 0.81 / 75.6 2.9 / 0.79 / 79.7

Total 2.9 / 0.94 / 80.2 2.8 / 0.91 / 80.1 2.8 / 0.93 / 80.6 2.6 / 0.87 / 83.4 2.7 / 0.90 / 82.2 2.7 / 0.91 / 80.6 2.6 / 0.86 / 83.6 2.5 / 0.86 / 84.3

Table 5: Visual localization on the full 7Scenes dataset [19]. We report the median translation error (cm) / median rotation
error (deg) / pose AUC at a 5 cm / 5 deg threshold. Most scenes are already saturated for point methods, and lines can hardly
make a difference.

by our method.

D.3. Failure Cases and Limitations

While jointly matching keypoints and lines in the same
matching network helps disambiguating many challenging
scenarios, GlueStick may still underperform in some sce-
narios. We list in the following some limitations of our
method, and report some failure cases.

Limitations. Currently, the main performance bottleneck
of GlueStick lies in the line segment detection. While this
field has seen great advances in recent years, existing line
detectors are still not as repeatable and accurate as point
features, making the line matching more challenging. Par-
tially occluded lines are also a potential issue for GlueStick,
as it represents lines with their two endpoints. However,
we observed a surprisingly good robustness of GlueStick to



Figure 9: HPatches [2] cumulative error curve. We report
the percentage of images where the homography is correctly
predicted for various pixel error thresholds.

partially occluded lines, probably thanks to the neighboring
points and lines that are not occluded. Note that it is also
possible to equip GlueStick with a similar mechanism as in
SOLD2 [13], by sampling several points along the line seg-
ments, and matching them with the Needleman-Wunsch al-
gorithm. We tried this option and observed a small increase
in performance (notably in areas with occluded lines), but
at the cost of higher running time. Therefore, we did not
incorporate this feature in our final method.

Another issue is that points and lines are still detected
with different methods for now. Thus, three networks / al-
gorithms need to be run to detect and describe keypoints,
detect lines, and finally match them. Jointly detecting
and describing points and lines would be an interesting fu-
ture direction of research. Furthermore, the extraction of
discrete features such as points and lines is usually non-
differentiable, such that one cannot get a fully differentiable
pipeline going from the feature extraction to their matching.
Enabling such end-to-end training could potentially make
features better specialized for matching.

Finally, our current supervision requires ground truth
correspondences of points and lines across images (usu-
ally obtained through reprojection with depth and camera
poses). Other supervision signals such as epipolar con-
straints and using two-view geometry would be an interest-
ing direction of improvement in the future.
Failure cases. We display in Fig. 12 a few examples of
scenarios where GlueStick may still fail or underperform.
First, in scenes with repeated patterns, GlueStick is able to
find a consistent matching, but can be displaced by one pat-
tern if there is no additional hint to disambiguate the trans-
form between the two images. This is for example the case
on 7Scenes Stairs [19], when the camera is only seeing sev-
eral steps, and it is unclear which step should be matching
with which one in the other image.

Secondly, GlueStick has not been trained for large rota-
tions beyond 45◦ and often fails in these scenarios. The pre-
training with homographies was done with rotations lower
than 45◦, and real viewpoint changes are rarely with such

rotations. Nonetheless, a simple fix is to rotate one of the
two images by 0◦, 90◦, 180◦ and 270◦, match it with the
other image, and keep the best matching among the four.

Finally, a challenging scenario happens when the images
have low texture in combination with symmetric structures.
The former makes visual descriptors less reliable, while the
latter makes it harder to disambiguate matches from the spa-
tial context. The performance is then degraded in such sit-
uations. Having access to sequential data and feature track-
ing may help solving such cases.

E. Attention visualization
We display the attention for some nodes in Fig. 13. This

visualization is obtained by taking the attention matrix at
various cross layers, averaging it across all heads, and tak-
ing the top 20 activated nodes. Green lines are used for
nodes with connectivity greater than 0 (i.e. line endpoints),
and cyan for nodes that are isolated keypoints. It can be
seen from the left column that keypoint attention is leverag-
ing the line structure to look for the right points along the
line. In the right column, we can see that line endpoints can
benefit from both keypoint and line endpoint attention. The
attention is initially looking broadly at the image, before
gradually focusing on the corresponding node in the other
image. Thus, both points and line endpoints can comple-
ment each other to disambiguate the matching process.
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(a) Repeated patterns: GlueStick finds consistent line matches, but displaced by one step.

(b) GlueStick is not trained on large rotations.

(c) The lack of texture / symmetric structures make visual descriptors / spatial descriptors less reliable.

Figure 12: Failure cases. We display correct line matches in green and wrong ones in red. GlueStick may still fail or
underperform in some situations, such as (a) perfectly repeated patterns that are hard to disambiguate, (b) large rotation (e.g.
> 45◦), and (c) lack of texture and symmetric structures.
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Figure 13: Cross attention visualization. We plot in the first column the attention from a keypoint and in the right column
the attention of a line endpoint, for various layers in the Graph Neural Network. We compute here the average attention
across all heads and keep the top 20 activated nodes. More opaque lines means higher attention, green matches are connected
to a line endpoint in the second image, and cyan matches are connected to an isolated keypoint. The last row pictures the
final matches.


