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Supplementary Material

In the following, we provide additional details about our
approach. Section A gives the complete derivation of our
proposed non minimal solver. Section B offers additional
details and derivations that were not covered in the main
paper. Section C displays more synthetic experiments with
our proposed solvers. Section D provides an ablation of our
proposed Local Optimization (LO) on ScanNet [4] and with
different numbers of iterations. Section E offers insights
about the generalization of our methods to other RANSAC
strategies. Finally, Section F shows multiple visualizations
of vanishing point estimation.

A. Complete Derivations of the Non Minimal
Solver

Section 2.4 of the main paper introduces our non mini-
mal solver to estimate the orthogonal vanishing points and
unknown focal length from an existing set of three vanish-
ing points and their inlier lines. We describe here in more
details the two least square methods that are used in this
solver.

Re-using the same notations, we are given three vanish-
ing points v1, v2, v3, and three sets of lines L1, L2, L3,
where each set Li, i ∈ {1, 2, 3} contains ni inliers of van-
ishing point vi. The first step is to re-estimate each van-
ishing point vi, i ∈ {1, 2, 3} from its inliers Li using the
least squares (LSQ) method. For this, we write the sum of
distances between each inlier line lj ∈ Li and the corre-
sponding VP vi, using homogeneous coordinates:

∑
lj∈Li

d(lj ,vi) =
∑
lj∈Li

|lTj vi|√
lj(0)2 + lj(1)2

. (1)

Introducing the ni×3 matrix Mi, defined by its rows Mi(j):

Mi(j) =
sign(lTj vi)√
lj(0)2 + lj(1)2

lTj , (2)

One can re-write the previous objective as Mvi = 0, and
the solution is obtained by computing the right null space of
the SVD of matrix M . This solution becomes our refined
vanishing point.

Next, we compute the unknown focal length. From equa-
tions (1) and (3) of the main paper and re-using the same
notations, we have, for every pair of vanishing points vi,
vj : dT

i dj = vT
i (K

−1)TK−1vj = 0. This constraint can be
rewritten as:

−vi(2)vj(2)f
2 = vi(0)vj(0) + vi(1)vj(1), (3)

where the numbers in the parentheses refer to the x, y,
and w coordinates of the homogeneous points. Taking
(i, j) ∈ {(1, 2), (1, 3), (2, 3)} gives three independent con-
straints that all are linear in f2:−v1(2)v2(2)

−v1(2)v3(2)
−v2(2)v3(2)

 f2 =

v1(0)v2(0) + v1(1)v2(1)
v1(0)v3(0) + v1(1)v3(1)
v2(0)v3(0) + v2(1)v3(1)


(4)

We solve it via QR decomposition, and since f can not be
negative, we finally obtain f = +

√
f2.

Finally, we correct the vanishing points to be orthogo-
nal. We compute the calibrated vanishing points di, i ∈
{1, 2, 3} as di = K−1vi, build a matrix D = [d1 d2 d3],
and decompose as D = USVT. We take the rows of matrix
R = UVT as the refined calibrated vanishing points.

B. Alternative Solvers
B.1. Different Elimination Order for 1-1-0g Solver

Here, we give an alternative elimination order for our 1-
1-0g solver, introduced in Section 2.3 of the main paper. We
reuse here the same notations. Estimating the orthogonal
vanishing points from projections of two mutually orthogo-
nal horizontal lines, and a known vertical direction (referred
to as 1-1-0g), leads to two equations of unknown t and f :

(1− t2)lT1Kb1 − 2tlT1Kb2 = 0,

2tlT2Kb1 + (1− t2)lT2Kb2 = 0.
(5)

In the main paper, we propose to solve these equations by
first eliminating t, and solving for f , leading to a degree 2
polynomial. Here, we give an alternative approach, where
the equations are solved by eliminating f and solving for t
afterwards.



Both equations are linear in f . Reusing the notation of
the main paper defined in (12), these two equations become:

(1− t2)(fδ1 + δ2)− 2t(fδ3 + δ4) = 0,

(1− t2)(fδ5 + δ6) + 2t(fδ7 + δ8) = 0.
(6)

We can easily express the focal length from the first equa-
tion of (6) as a function of t and substitute it into the second
equation to get the following constraint:

0 =4t2(δ4δ7 − δ3δ8)

+ 2t(1− t2)(δ4δ5 + δ1δ8 − δ3δ6 − δ2δ7)

+ (1− t2)(δ1δ6 − δ2δ5).

(7)

This is a univariate quartic polynomial equation. We use
the hidden variable approach to solve for t, which gives us
4 solutions. For every solution, we find f from (6) and only
keep (t, f) pairs where the focal length f is positive. Then,
we use t to calculate the rotation matrix R. However, this
approach is slower than the one proposed in the main paper:
it needs 1.64µs to solve one instance of the 1-1-0g problem,
while the proposed one only needs 0.17µs.

B.2. Non Minimal Solver with Linearized Rotation

In the main paper, we use a non-minimal solver that es-
timates each vanishing point separately, and then corrects
the vanishing points to be orthogonal. Here, we propose an
alternative non-minimal solver, which is iterative and uses a
first-order approximation of the matrix KR to estimate all
3 vanishing points simultaneously.

We use the same notation as in the main paper: vi, i ∈
{1, 2, 3} denotes a vanishing point in direction di. Li =
{li,j , j ∈ {1, ..., ni}}, i ∈ {1, 2, 3} is a set of ni lines con-
sistent with vanishing point vi.

This non-minimal solver uses a linearized model of ma-
trix [v1 v2 v3] = KR to simultaneously minimize the sum
of squared errors:

3∑
i=1

ni∑
j=1

(
lTi,jvi

∥li,j∥

)2

. (8)

Let K0R0 be the initial estimate of KR, obtained by the
minimal solver. The first-order Taylor polynomial of KR
can be obtained as:

KR ≈ K0R0 + δKR0 −KδRR0 (9)

with derivatives δK and δR defined as:

δK =

δf 0 0
0 δf 0
0 0 0

 , δR =

 0 −δv3 δv2
δv3 0 −δv1
−δv2 δv1 0

 .

(10)

Now, we can approximate every vanishing point vi as:

vi ≈ Biδx+ ci, (11)

where

Bi =

 0 −f0r3,i f0r2,i r1,i
f0r3,i 0 −f0r1,i r2,i
−r2,i r1,i 0 0

 ,

ci =

f0r1,if0r2,i
r3,i

 , δx =
[
δv1 δv2 δv3 δf

]T
.

(12)

We use matrices Ai, i ∈ {1, 2, 3} defined in Section 2.4 of
the main paper, and build matrices:

A =

A1 0 0
0 A2 0
0 0 A2

 ,B =

B1

B2

B3

 ,C =

c1c2
c3

 . (13)

Then, we re-write the minimization problem of (8) as:

min∥ABδx+AC∥2, (14)

and we find the update δx with the least-squares method.
Then, we find the vanishing points by (11). To find the fo-
cal length f and the orthogonal calibrated vanishing points
d1,d2,d3 from the uncalibrated vanishing points v1, v2,
v3, we use the procedure proposed in the main paper in
Section 2.4. For the next iteration, we set f0 := f , and
R0 := [d1,d2,d3], and find the update in the same way.

The comparison of this non-minimal solver with the one
proposed in the main paper is shown in the following sec-
tion. We observed a lower performance for the solver with
linearized rotation in our real-world experiments, and thus
only presented the non orthogonal one in the main paper.
However, the former could still be used in cases with small
rotations with only a few iterations, and could become an
efficient alternative to the non orthogonal solver.

C. Additional Synthetic Tests
In order to further evaluate the solvers in various scenar-

ios, we have performed additional synthetic tests, presented
in this section.

Non minimal solver tests. To evaluate the non-minimal
solvers, we generated the minimal problems exactly as in
the main paper. Figure 1 shows the average rotation and fo-
cal length errors of every proposed minimal solvers refined
by the linearized non-minimal solver with 10 iterations. The
1-1-0g solver leads to the most accurate solutions on almost
all noise configurations. Figure 2 shows the average rota-
tion and focal length errors of the results of different non-
minimal solvers, as a function of the number of lines used
within the solver. The error does not change significantly



after adding more than 20 lines per direction. While the
linearized non-minimal solver gives a better estimation of
the rotation, using the nonorthogonal non-minimal solver
leads to lower focal length errors. Figure 3 shows the errors
of different non-minimal solvers as a function of the input
noise. Again, the linearized non-minimal solver gives more
accurate rotations, while the nonorthogonal non-minimal
solver gives more accurate focal lengths. Figure 4 shows
the evaluation of the running time of different non-minimal
solvers. The runtime increases with the increasing number
of lines used within the non-minimal solver, and this growth
is roughly linear.

Principal point tests. To evaluate the robustness of our
solvers to the incorrectly estimated principal point, we gen-
erate minimal problems similarly to the main paper, and we
perturb the principal point with Gaussian noise with stan-
dard deviation σp. Figure 5 shows the average rotation and
focal length errors on different levels of σp. Solvers 1-1-
0g and 2-2-0 lead to the more accurate solutions. Figure 6
shows the average rotation and focal length errors on differ-
ent levels of σp refined by the non-minimal solver. It can
be seen that all the proposed non-minimal solvers are very
robust to small noise on the principal point, and that their
estimate of the focal length is significantly better than with-
out any local optimization.

D. Additional Ablations on the LO

Evaluation on ScanNet [4]. Table 1 shows a similar ab-
lation study for our proposed Local Optimization (LO) as
in the main paper, but for the ScanNet dataset [4]. Note
that the lack of improvement from Iter for our solvers stems
from the very noisy gravity prior in this dataset, that makes
the initial model too noisy for the optimization to converge
to an accurate solution.
Number of Iterations. The results in the main paper corre-
spond to the best numbers that could be obtained, assuming
that time is not a limitation. In resource-constrained sce-
narios when speed matters, it is also possible to reduce the
number of LO iterations to significantly speed up the van-
ishing point detection, for a minor drop of performance. As
shown in Table 2, running only 10 iterations of LO is al-
ready enough to achieve a high performance, at a negligible
overhead time.

E. Generalization to other RANSAC

While our proposed approach leverages existing
RANSAC frameworks such as LO-RANSAC [7] and
hybrid RANSAC [3], it can also be applied to more recent
RANSAC strategies. We adapt here our approach to
MAGSAC [1, 2], one of the state-of-the-art RANSAC
currently existing. We replace our scoring method with
the one proposed in MAGSAC, and obtain the results of

Figure 1: Noise study of the linearized non-minimal
solver.: The average (over 100000 runs) rotation (left), and
relative focal length error (right) of five solvers as a func-
tion of the image and gravity noise. The results are refined
with a linearized non-minimal solver with 10 iterations and
20 lines per direction. The fixed noise std. is in the title (g -
gravity, i - image).

Table 3. MAGSAC scoring can slightly boost the perfor-
mance, showing that future improvements on RANSAC
can further benefit our approach.

F. Visualizations of VPs and their Applications

We display several visualizations of the inlier lines for
each vanishing point in Figure 7, with one color per VP.
Our hybrid RANSAC with prior gravity is able to find more
inliers and better rotations than the previous best solver for
uncalibrated images [10]. When using the ground truth
gravity, the results are even further improved.

Note that in the last two rows, we display images of the
ScanNet dataset [4], which has some unstructured scenes
and can be quite challenging for vanishing point estima-



Figure 2: Effect of the number of lines on non-minimal
solvers (NMS).: Average (over 100000 samples) rotation
(left) and relative focal length error (right) as a function
of the number of lines used in the NMS. We considered
the following approaches: baseline (without NMS) , non-
orthogonal NMS presented in the main paper, and linearized
rotation with n iterations (n iters). The 1-1-0g solver was
used for the initialization. The fixed noise std. is in the title
(g - gravity, i - image).

tion. For example, in the last row, the 2-1-1 solver [10] is
misleaded by the many red lines of the dish dryer, which
are actually inconsistent with the real Manhattan direc-
tions. On the contrary, our approach with prior gravity finds
a better vertical direction and consequently better recog-
nizes the other two vanishing directions. Finally, the hybrid
RANSAC leveraging ground truth gravity is able to detect
correctly all the Manhattan directions and obtains a much
lower rotation error.

Additionally, to better highlight the application scenarios
of our method, we show in Figure 8 two cases where a prior
on the gravity is available. The first one (first three rows)
is for autonomous driving, where the cameras are usually
always upright and the gravity can be assumed to be verti-
cal. In the second example (last two rows), augmented and
mixed reality (AR/MR) devices have usually an onboard
IMU providing the gravity. In both cases, cars and AR/MR
headsets are devices used over long periods of time, and the
calibration of theirs cameras are subject to drift, and may

Figure 3: Effect of noise on our non-minimal solvers
(NMS).: The plots show the relation between the noise of
the input (endpoints of the lines in px, gravity vector in de-
grees) and the rotation and relative focal length error. We
consider the following approaches: baseline (without NMS)
, non orthogonal NMS of the mai paper, linearized rotation
with n iterations (n iters). The 1-1-0g solver was used for
the initialization. The fixed noise std. is in the title (g -
gravity, i - image).



Figure 4: Run-time of our non-minimal solvers as a func-
tion of number of lines used in the solver.

Figure 5: Effect of noise on the principal point. The av-
erage (over 100000 runs) rotation (left), and relative focal
length error (right) of the proposed solvers as a function of
the principal point noise σp. The fixed noise std. is in the
title (g - gravity, i - image).

need to be recalibrated on-the-fly. Thus, our method can
benefit from the prior gravity available in both situations,
while providing an estimate of the focal length at test time.
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2-1-1 solver [10] Hybrid - Prior gravity Hybrid - Ground truth gravity

Num inliers = 292 ; Rot error = 8.92 Num inliers = 353 ; Rot error = 5.38 Num inliers = 402 ; Rot error = 0.48

Num inliers = 138 ; Rot error = 6.81 Num inliers = 154 ; Rot error = 2.05 Num inliers = 160 ; Rot error = 1.43

Num inliers = 324 ; Rot error = 8.55 Num inliers = 488 ; Rot error = 0.48 Num inliers = 487 ; Rot error = 0.37

Num inliers = 24 ; Rot error = 32.68 Num inliers = 35 ; Rot error = 22.03 Num inliers = 62 ; Rot error = 2.67

Num inliers = 58 ; Rot error = 40.45 Num inliers = 51 ; Rot error = 33.76 Num inliers = 69 ; Rot error = 1.29

Figure 7: Visualization of vanishing points. We display the inlier lines with one color per vanishing point, for the 2-1-1
solver of [10], and our hybrid solver with either prior or ground truth gravity. The first three rows are from YorkUrban [5],
and last two rows from ScanNet [4].



2-1-1 solver [10] Hybrid solver

Rot error = 30.58◦ ; f error = 0.514 Rot error = 6.88◦ ; f error = 0.290

Rot error = 12.13◦ ; f error = 0.309 Rot error = 4.05◦ ; f error = 0.182

Rot error = 9.59◦ ; f error = 0.436 Rot error = 2.74◦ ; f error = 0.071

Rot error = 17.98◦ ; f error = 0.647 Rot error = 7.34◦ ; f error = 0.569

Rot error = 27.82◦ ; f error = 1.294 Rot error = 10.82◦ ; f error = 0.362

Figure 8: Visualization of applications. We display the inlier lines with one color per vanishing point, for the 2-1-1 solver
of [10] (left), and our hybrid solver (right). The first three rows display pairs of images from an autonomous driving scenario
on the KITTI dataset [6]. Assuming that the gravity is vertical already gives a very good prior to our solver and boost the
performance on relative rotation estimation. The last two rows are from an augmented reality setup on the LaMAR dataset [9].
Head movements are often purely rotational, and the IMU information is crucial to obtain accurate pose estimates.


