
A. Algorithm Details
We introduce the details of the training process for our ST-Prompt in Algorithm A1.

Algorithm A1 Training Process of ST-Prompt
Initialization: Training dataset of task k, Dk = {(V k

i , yki ), y
k
i ∈ Lk}; Pre-trained model, F (; Θ) = {fv(; θv), ft(; θt)};

Task-specific prompt pools of task k, Pk
s , Pk

t and Pk
c ; Temporal-modeling prompt pool, Pa;

1: for k = 1, 2, ...,K do
2: Extract multi-grained features of videos in the training dataset Dk;
3: Run K-Means algorithm on multi-grained features respectively to get the centroids of each kind of feature;
4: Calculate and store the centroids of comprehensive, spatial and temporal features for task-specific prompt pools;
5: Calculate and store the centroids of frame features for temporal-modeling prompt pool;
6: for iter=1,2,...Itermax do
7: Draw a video V k

i and its label yki in the training dataset Dk

8: Extract the query feature Fv(V
k
i ), Fs(V

k
i ), Ft(V

k
i ) and Fv(I

k
ij) by the pre-trained visual encoder fv(; θv);

9: Lookup task-specific prompts from k-th prompt pools by feature matching;
10: Organize the visual and text task-specific prompts together, respectively, via Eq. 2;
11: Prepend task-specific prompts to the video and text embedding feature: V k

ip = [P vk
i ;V k

ie],W
k
wp = [P tk

i ;W k
we]

12: Calculate the task-agnostic prompts by frame-level attention;
13: Prepend the task-agnostic prompts to the video embedding feature as V k

ip = [P k
i1;P

k
i2; ...;P

k
iT ;P

vk
i ;V k

ie];
14: Calculate per sample loss as Li = L(fv(V k

ip), ft(W
k
wp), y

k
i )

15: for P ∈ zip(Pk
s ,P

k
t ,P

k
c ,Pa) do

16: P ← P − η∇PLi

17: end for
18: end for
19: end for

The training loss L follows the contrastive similarity loss in CLIP [5]. The testing process of ST-Prompt is similar as the
training process, where the most significant difference is that the selection of task-specific prompts is not constrained by the

task-id. The prediction probability is calculated as p = e
<fv(V k

ip),ft(W
k
wp)>∑W

w=1 e
<fv(V k

ip
),ft(W

k
wp)>

for classification.

B. Different Pooling Operations for Multi-grained Features
During prompts initialization and matching, we utilize average pooling operation along the temporal and spatial dimension

to gain the spatial and temporal features from a fused spatio-temporal video feature, respectively. Here we discuss how other
kinds of pooling operations influence the final results of matching in Table A1.

Operation Stochastic Max Average

HMDB51 58.36 59.29 60.14
UCF101 83.68 84.15 85.54

Table A1. Ablation for the pooling operation of multi-grained features.

From the results, we can find that: first, no matter which kind of pooling operation is used, multi-grained prompts can
bring performance improvement through diversified feature matching; second, the different types of pooling truly influence
the final results of ST-Prompt, and average pooling achieves the better performance than stochastic and max pooling. The
reason may be that average pooling can better obtain the overall information, while the others only focus on certain points.

C. Additional Results and Discussion of Hyperparameter Effects
In the main body, we have discussed the effects of hyperparameters in ST-Prompt by illustrating the results on HMDB51

with 5 steps. Here we implement some results on UCF101 with 10 steps in Fig. A1 to verify the generality of our conclusions
of hyperparameter selection.



Figure A1. The effects of some hyperparameters in ST-Prompt on UCF101 with 10 steps.

Further, especially for the number of prompts, i.e. cluster numbers of K-Means, all results prove that more clusters in a
task lead to higher accuracy. This is contrary to the conclusion in [7], which claims that its method is stably for different
cluster numbers. We think the different conclusion is due to different tasks. For domain-incremental learning, the feature
distribution is closed to each other in one task, but the situation is different in class-incremental learning. The classes are
organized in a sequence with random order, so that the features of different classes in a task may not be close to each other,
but scattered in different locations in the feature space. Hence, the final average accuracy is tightly corresponding to the value
of cluster numbers.

D. Experiments on vCLIMB benchmark.
We present experiments on the vCLIMB benchmark in Table A2 for comparison with other video class-incremental

learning methods. Our method still shows significant improvement compared to our main baseline method, i.e. S-liPrompts.

K400 UCF101
Method 10 Tasks 20 Tasks 10 Tasks 20 Tasks

Zero-shot 46.57 46.69 68.39 68.44
S-liPrompts 50.17 50.22 80.42 80.39
ST-Prompt 54.61 54.49 85.14 85.29

Upper-Bound 72.15 72.15 91.95 91.95
Table A2. Experiments on VCLIMB benchmark.

E. Dataset Details
In this paper, we follow the video frequently-used class-incremental benchmarks presented in TCD [3], which contains

three standard action recognition datasets:

UCF101. UCF101 [6] is an action recognition dataset of realistic action videos, collected from YouTube, having 13.3K
videos from 101 action categories, which can be found in https://www.crcv.ucf.edu/data/UCF101.php. In our experiments,
we train 51 classes from UCF101 in the initial stage, and divide the remaining classes into groups of 10, 5, and 2 classes for
class-incremental learning.

HMDB51. The HMDB51 dataset [2] is a large collection of realistic videos from various sources which consists of 6.8K
videos and can be found in https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/. When optimiz-
ing model for HMDB51, the base model is trained using 26 classes and the rest classes are equally split into 5 and 25
groups.



Something-Something v2. Something-Something v2 [1] is a crowd-sourced dataset that shows humans performing pre-
defined basic actions with everyday objects, which requires better temporal modeling ability than UCF101 and HMDB51.
It can be found in https://developer.qualcomm.com/software/ai-datasets/something-something. In this paper, the model for
Ssv2 is trained with 84 classes first and the remaining classes are grouped into 10 and 5 classes.

F. Experimental Details
Model and Hyperparameter Setup. CLIP ViT-B/16 [5] is employed as our backbone, and we follow the data pre-
processing procedure and the basic training setting of TCD [3]. Each incremental training procedure takes 50 epochs. We
use SGD optimizer without weight decay with an initial learning rate of 0.001 for all datasets, which is reduced by cosine
learning rate schedule. For the hyperparameters of ST-Prompt, the length of task-specific prompts is set as 5 and the length
of temporal-modeling prompts is 1. The total number of prompts in each prompt pool is equal to the number of classes in all
settings.

Hardware Information. We train all models on 8 NVIDIA V100 GPUs and use PyTorch [4] for all our experiments.
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