
DELFlow: Dense Efficient Learning of Scene Flow for Large-Scale Point Clouds
(Supplementary Material)

Chensheng Peng1, Guangming Wang1, Xian Wan Lo1, Xinrui Wu1, Chenfeng Xu2,
Masayoshi Tomizuka2, Wei Zhan2, and Hesheng Wang1*

1Department of Automation, Key Laboratory of System Control and Information Processing of
Ministry of Education, Shanghai Jiao Tong University

2 Mechanical Systems Control Laboratory, University of California, Berkeley
{pesiter-swift,wangguangming,kaylex.lo,916806487,wanghesheng}@sjtu.edu.cn

{xuchenfeng,tomizuka,wzhan}@berkeley.edu

1. Overview

We present a comprehensive overview of our research
findings in this supplementary material. Sec. 2 includes
a detailed description of the network parameters and data
augmentation parameters used in our experiments. In
Sec. 3, we provide additional results on the dataset with
only non-occluded points as input. Finally, in Sec. 4, we
include more visualization results and analysis on both suc-
cessful and failing cases.

2. Implementation Details

2.1. Data Processing

Since the dataset does not provide point clouds directly,
we construct the point clouds and ground truth scene flow
from the depth map and optical flow. We exclude points
with depth exceeding 35m in FlyingThings3D dataset [9]
and KITTI Scene Flow 2015 dataset [11]. The training
dataset is augmented by adding color jitter to RGB images
as well as random horizontal flipping and random cropping
of the images and projected point clouds. The original im-
age size of the FlyingThings3D dataset is 540 × 960. To
save for computational resources, we down-sample the im-
ages and the corresponding point clouds to 270× 480 with
a stride of 2 and the camera intrinsic changes accordingly.
The number of valid points taken as input is 56269 on av-
erage, which is much more than 8192 in previous methods.
KITTI Scene Flow 2015 dataset contains 200 training sam-
ples and 200 testing samples. Due to limited training sam-
ples, the model trained on FlyingThings3D are fine-tuned
on KITTI dataset. Since KITTI dataset contains images
with different size, we pad the images and the projected
point clouds to a uniform size of 376× 1242.

*Corresponding Authors. The first two authors contributed equally.

2.2. Network Parameters

During the training process on FlyingThings3D dataset,
the input shape of the projected point cloud is 270×480×3.
In the subsequent fine-tuning process on KITTI [11] dataset,
we set the shape of the input point cloud under 2D dense
representation to be 376× 1242× 3.

Each layer in the Multi-Layer Perceptron (MLP) in-
cludes the ReLU activation function, except for the FC
layer. The kernel size is set to be 1 × 1 with stride 1 for
a 2D MLP, so that the scene flow and optical flow can be
predicted from each point stored in the pixel. The detailed
layer parameters including K values in K Nearest Neigh-
bors (KNN) algorithm, the stride of each down-sampling
layer, and the number of feature channels in MLP are de-
scribed in Tab. 1.

In the kernel-based grouping technique, the center pixels
are selected by setting a stride (sh, sw), which is similar to
the kernel center selecting process of 2D convolution. The
centers are selected at a sh interval along the H-axis and sw
interval along the W -axis.

2.3. Training Process

FlyingThings3D dataset contains 19640 training sam-
ples. We first pre-train the model on a quarter of the dataset.
The initial learning rate is 0.001, with a decay ratio of 0.8
and a decaying step of 80. Then the model is fine-tuned on
the complete FlyingThings3D dataset with an initial learn-
ing rate of 0.0001 for 400 epochs. The decay ratio is 0.5 and
the decaying step is 50. Finally, the model trained on com-
plete FlyingThings3D dataset are fine-tuned on the KITTI
dataset with an initial learning rate of 0.0001. Besides, for
model on the KITTI dataset, we increase the size of search-
ing kernel, since the input image is bigger than that of Fly-
ingThings3D dataset.

1



Module Layer Type K / Ks Stride MLP width

Point Feature Pyramid

Set conv layer 1 16 2 [3,16,16]
Set conv layer 2 16 2 [16,16,32]
Set conv layer 3 16 2 [32,32,64]
Set conv layer 4 16 2 [64,64,128]
Set conv layer 5 16 2 [128,128,256]

Image Feature Pyramid

Residual conv block 1 3 × 3 2 [3,16,16]
Residual conv block 2 3 × 3 2 [16,16,32]
Residual conv block 3 3 × 3 2 [32,32,64]
Residual conv block 4 3 × 3 2 [64,64,128]
Residual conv block 5 3 × 3 2 [128,128,256]

Multi-Modal Feature Fusion

Gated fusion block 1 3 × 3 2 [32,32,32]
Gated fusion block 2 1 × 1 2 [64,64,64]
Gated fusion block 3 1 × 1 2 [128,128,128]
Gated fusion block 4 1 × 1 2 [256,256,256]

Iterative warp-refinement

Flow warp refinement 1
cost volume 16 1 [32,32,32]

Flow predictor 1 x 1 1 [96, 128, 64]
FC layer - 1 [64,3]

Flow warp refinement 2
cost volume 16 1 [64,64,64]

Flow predictor 1 x 1 1 [192, 256, 128]
FC layer - 1 [128,3]

Flow warp refinement 3
cost volume 16 1 [128,128,128]

Flow predictor 1 x 1 1 [384, 512, 256]
FC layer - 1 [256,3]

Flow warp refinement 4
cost volume 16 1 [256,256,256]

Flow predictor 1 x 1 1 [768, 1024, 512]
FC layer - 1 [512,3]

Table 1. Detailed network parameters. K points are selected using the K Nearest Neighbors (KNN) algorithm for set conv layer, set
upconv layer, and attentive cost volume layer. Ks denotes the kernel size of convolutional block. For the set upconv layer, skip connections
are used to propagate the sparse features to dense features. MLP width means the number of output channels for each layer of MLP.

2.4. KITTI Refinement

The rigidity assumption is widely used in some scene
flow estimation works [14, 15, 10, 8]. Following Cam-
LiFlow [6], we use a semantic segmentation network DDR-
Net [3] to determine the background and foreground of the
scenes in KITTI dataset. Since most objects in the back-
ground such as buildings, we use the refinement module in
RigidMask [20] to refine the background objects based on
the rigid assumption.

2.5. Evaluation Metrics

Let f̂ and fgt be the predicted and ground truth flow,
respectively. The evaluation metrics for scene flow predica-
tion are as follows:

EPE3D(m): the average error ε = ∥f̂ − fgt∥2 per point.

EPE3D =
1

N

N∑
i=1

∥∥∥f̂ − fgt

∥∥∥
2
. (1)

ACC0.05(%): percentage of f̂ whose error < 0.05m or
relative error ∥f̂−fgt∥2

∥fgt∥2
< 5%.

ACC0.10(%): percentage of f̂ whose error < 0.1m or rel-
ative error < 10%.

Outliers3D(%): percentage of f̂ whose error > 0.3m or
relative error > 10%.

EPE2D(px): 2D equivalent of EPE3D, the average error
of optical flow per pixel.

EPE2D =
1

N

N∑
i=1

∥∥ofi − ofi
∥∥
2
, (2)

where ofi stands for the ground truth optical flow and ofi
stands for the predicted optical flow.

ACC2D(%): percentage of pixels whose error > 3px or

relative error
∥ofi−ofi∥

2

∥ofi∥2
> 5%.

3. Comparison with SOTA Baselines

There are two different ways to process the FlyingTh-
ings3D dataset and KITTI dataset. HPLFlowNet [2],
PointPWC-Net [19] , and HALFLOW [16] only keep non-
occluded points as input to the network, which simplifies
the problem. However, FlowNet3D [7] keeps occluded



Dataset Method Data EPE3D ↓ ACC0.05 ↑ ACC0.10 ↑ Outliers3D ↓ EPE2D ↓ ACC1px ↑

FT3Ds

ICP [1] No 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913
FlowNet3D [7] Quarter 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692
SPLATFlowNet [13] Quarter 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512
HPLFlowNet [2] Quarter 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764
HPLFlowNet [2] Complete 0.0696 - - - - -
PointPWC-Net [19] Complete 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994
HALFlow [16] Quarter 0.0511 0.7808 0.9437 0.3093 2.8739 0.8056
HALFlow [16] Complete 0.0492 0.7850 0.9468 0.3083 2.7555 0.8111
FLOT [12] Complete 0.0520 0.7320 0.9270 0.3570 - -
HCRF-Flow [5] Quarter 0.0488 0.8337 0.9507 0.2614 2.5652 0.8704
PV-RAFT [18] Complete 0.0461 0.8169 0.9574 0.2924 - -
FlowStep3D [4] Complete 0.0455 0.8162 0.9614 0.2165 - -
Ours Complete 0.0388 0.8739 0.9637 0.2062 2.2042 0.8762

KITTIs

ICP [1] No 0.5181 0.0669 0.1667 0.8712 27.6752 0.1056
FlowNet3D [7] Quarter 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
SPLATFlowNet [13] Quarter 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189
HPLFlowNet [2] Quarter 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938
HPLFlowNet [2] Complete 0.1113 - - - - -
PointPWC-Net [19] Complete 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
HALFlow [16] Quarter 0.0692 0.7532 0.8943 0.2529 2.8660 0.7811
HALFlow [16] Complete 0.0622 0.7649 0.9026 0.2492 2.5140 0.8128
FLOT [12] Complete 0.0560 0.7550 0.9080 0.2420 - -
HCRF-Flow [5] Quarter 0.0531 0.8631 0.9444 0.1797 2.0700 0.8656
PV-RAFT [18] Complete 0.0560 0.8226 0.9372 0.2163 - -
FlowStep3D [4] Complete 0.0546 0.8051 0.9254 0.1492 - -
Ours Complete 0.0501 0.8259 0.9375 0.2225 1.8091 0.8887

Table 2. Quantitative results compared with recent methods on FlyingThings3D dataset [9] and KITTI Scene Flow dataset [11]. Only
non-occluded points are taken as input. Quarter means training the model on one fourth of the data. Complete means using the complete
dataset for training. ↑ denotes better performance with higher value, and ↓ is the opposite.

Evaluation Dataset Method Input Sup. EPE3D ↓ ACC0.05 ↑ ACC0.10 ↑ Outliers3D ↓

FT3Do

FlowNet3D [7] Points Full 0.151 0.207 0.579 0.789
FLOT [12] Points Full 0.170 0.234 0.528 0.700
FESTA [17] Points Full 0.111 0.431 0.744 -
Ours Points Full 0.081 0.695 0.876 0.401

KITTIo

Self-Point-Flow Points Self 0.105 0.417 0.725 0.501
FlowNet3D [7] Points Full 0.173 0.276 0.609 0.649
FLOT [12] Points Full 0.110 0.419 0.721 0.486
FESTA [17] Points Full 0.097 0.449 0.833 -
Ours Points Full 0.083 0.789 0.870 0.381

Table 3. Quantitative results compared with recent methods on FT3D dataset [9] KITTI dataset [11] where occluded points are kept.

points. FLOT [12] denotes the datasets with only non-
occluded points as FT3Ds and KITTIs. The datasets with
occluded points are denoted as FT3Do and KITTIo. In
the main manuscript, we provide the experimental results
on FT3Do and KITTIo. To compare our model with more
SOTA point-based methods, we provide the experimental
results on FT3Ds and KITTIs.

Since these point-based methods are based on only 3D
learning methods, we compare our performance using only
the 3D LiDAR branch with these point-based methods [7,

5, 18, 4, 19, 13, 16, 12, 17, 2]. As shown in Tab. 2, it
can be observed that our model can also report excellent
performance on the non-occluded dataset FT3Ds even with
more input point.

Our proposed method addresses the scene flow predic-
tion problem in a 3D manner. To verify the effectiveness
of our proposed 3D branch, we compare our methods with
only 3D branch on FT3Do and KITTIo. The experimental
results in Tab. 3 demonstrate that our method outperforms
other point-based methods on the occluded dataset.



Figure 1. Qualitative visualization results of flow estimation on testing KITTI dataset. Results are obtained from the official KITTI website.

Figure 2. Qualitative visualization results of 3D scene flow estimation on KITTI dataset.



4. Visualization
Fig. 1 shows some successful and failure cases on the

KITTI testing dataset. Successful cases are in the first two
column and failure cases are in the last two column. We
believe that the failures of prediction are mainly due to the
point clouds. The point clouds that our network takes as
input are pseudo point clouds obtained from depth instead
of real points collected from LiDAR. Since the depth are
predicted from images, over-exposure and darkness would
influence the accuracy of point clouds. Therefore, the scene
flow prediction could be incorrect.

In the main manuscript, we illustrate some examples
from the FlyingThings3D dataset. Here we provide more
3D visualization examples from the KITTI dataset as shown
in Fig. 2. It can be observed that our method achieves the
best performance.

References
[1] Paul J Besl and Neil D McKay. Method for registration of

3-d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586–606. Spie, 1992. 3

[2] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3254–3263, 2019. 2,
3

[3] Yuanduo Hong, Huihui Pan, Weichao Sun, and Yisong
Jia. Deep dual-resolution networks for real-time and accu-
rate semantic segmentation of road scenes. arXiv preprint
arXiv:2101.06085, 2021. 2

[4] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flow-
step3d: Model unrolling for self-supervised scene flow es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4114–
4123, 2021. 3

[5] Ruibo Li, Guosheng Lin, Tong He, Fayao Liu, and Chunhua
Shen. Hcrf-flow: Scene flow from point clouds with con-
tinuous high-order crfs and position-aware flow embedding.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 364–373, 2021. 3

[6] Haisong Liu, Tao Lu, Yihui Xu, Jia Liu, Wenjie Li, and Lijun
Chen. Camliflow: bidirectional camera-lidar fusion for joint
optical flow and scene flow estimation. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit, pages 5791–5801, 2022. 2

[7] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 529–537, 2019. 2, 3

[8] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and
Raquel Urtasun. Deep rigid instance scene flow. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3614–3622, 2019. 2

[9] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 1, 3

[10] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015. 2

[11] Moritz Menze, Christian Heipke, and Andreas Geiger. Ob-
ject scene flow. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 140:60–76, 2018. 1, 3

[12] Gilles Puy, Alexandre Boulch, and Renaud Marlet. Flot:
Scene flow on point clouds guided by optimal transport. In
European conference on computer vision, pages 527–544.
Springer, 2020. 3

[13] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2530–2539, 2018. 3

[14] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-
wise rigid scene flow. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1377–1384,
2013. 2

[15] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d
scene flow estimation with a piecewise rigid scene model. In-
ternational Journal of Computer Vision, 115(1):1–28, 2015.
2

[16] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang.
Hierarchical attention learning of scene flow in 3d point
clouds. IEEE Transactions on Image Processing, 30:5168–
5181, 2021. 2, 3

[17] Haiyan Wang, Jiahao Pang, Muhammad A Lodhi, Yingli
Tian, and Dong Tian. Festa: Flow estimation via spatial-
temporal attention for scene point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14173–14182, 2021. 3

[18] Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou.
Pv-raft: point-voxel correlation fields for scene flow estima-
tion of point clouds. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
6954–6963, 2021. 3

[19] Wenxuan Wu, Zhiyuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: A coarse-to-fine network for super-
vised and self-supervised scene flow estimation on 3d point
clouds. arXiv preprint arXiv:1911.12408, 2019. 2, 3

[20] Gengshan Yang and Deva Ramanan. Learning to seg-
ment rigid motions from two frames. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1266–1275, 2021. 2


