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In this supplementary material, we provide more details
about EmoTalk, which consists of five parts: 1) The im-
plementation details of EmoTalk, including the model ar-
chitecture and parameter details; 2) The transform module
from blendshape to FLAME head, including the transform
method and calculation formula; 3) The comparison method
with baselines, including the comparison objects and eval-
uation details; 4) The construction details of the 3D-ETF
dataset, including data collection, preprocessing, and post-
processing; 5) The implementation details of blendshape
capture method.

1. Implementation details

EmoTalk’s overall architecture is illustrated in Fig. 2 of
the main paper. In order to improve the reproducibility and
credibility of EmoTalk on the 3D emotional face animation
generation task, we will further explain how we design and
implement two key components: emotion disentangling en-
coder and emotion-guided feature fusion decoder.

1.1. Training details

The network receives preprocessed video and audio data
as input. The video stream is converted to 30 frames per
second, while the audio sampling rate is 16 kHz. A fa-
cial blendshape capture method generates facial parameters
consisting of 52 blendshape coefficients per frame for the
video data.

During the training process, the model is optimized end-
to-end using the Adam optimizer [4]. The learning rate and
batch size are set to 1e - 4 and 8, respectively. The model is
trained on a single NVIDIA V100, and the entire network
takes approximately 8 hours (80 epochs) to train.

*corresponding authors

1.2. Emotion disentangling encoder

To perform emotion disentanglement, we first convert
the input audio signal to a sampling rate of 16 KHz. Then
we encode it using temporal convolutional network (TCN)
to process sequential data with convolutional architecture.
Next, we use a linear interpolation layer to adjust the length
of the encoded representation according to the target audio
signal. For instance, if we want to reconstruct Ac1,e1 us-
ing Ac1,e2 and Ac2,e1 as inputs, then we need to interpolate
them to have the same length as Ac1,e1. After that, we de-
code the interpolated representation using 24 transformer[9]
blocks. Each transformer block has a model dimension of
1024, an inner dimension of 4096, and 16 attention heads.
Finally, we obtain two feature vectors of dimension 1024
each, representing content and emotional information in the
output audio signal from pre-trained models. We use a
cross-reconstruction constraint method to optimize model
parameters during the training process, which we detail in
Sec 3.1 of the main paper.

1.3. Emotion-guided feature fusion decoder

We first map the output of the features by the emo-
tion feature extractor and the content feature extractor
to 256-dimensional and 512-dimensional vectors, respec-
tively. Then we add two one-hot embeddings for emotion
level and personal style, each mapped to a 32-dimensional
vector. The emotion level is a binary variable indicating
high or low intensity, while the personal style is a multi-
variate variable representing 24 different speakers. We con-
catenate these four features to form an 832-dimensional fea-
ture vector. We also add a periodic position encoding[2]
of the same dimension to this vector. Moreover, we use a
fully connected layer to reduce the dimension of the output
of the features by the emotion encoder from 1024 to 832
for subsequent emotion guidance. For biased multi-head



self-attention and emotion-guided multi-head attention, we
use four heads and set the dimension to 832 for each trans-
former decoder block. The concatenated features serve as
the input sequence for the decoder, while emotional fea-
tures serve as the output sequence from the last encoder
layer, thus achieving emotion guidance. Finally, we feed the
forward layer’s output into the audio-blendshape decoder,
which is a fully connected layer that maps between 832 di-
mensions and 52 dimensions blendshape coefficients. Thus
we obtain emotion-enhanced blendshape coefficients.

2. Blendshape to FLAME transform module
The Blendshape[5] to FLAME[6] transform module

converts blendshapes, which is a way of deforming a mesh
by interpolating between different shapes, to a FLAME
head, which is a 3D head model that captures variations in
identity, expression, head pose and gaze. This transform
module enables our model to transfer facial expressions
across different virtual characters quickly. To achieve this
conversion, we collaborated with professional animators to
create 52 semantically meaningful FLAME head templates
(see Fig. 1). These templates allow us to obtain the facial
deformation parameters corresponding to blendshape and
mesh head. We use blend linear skinning to interpolate be-
tween these parameters. Because blendshape labels have
semantic meanings, they can quickly transfer facial motions
across different virtual characters.

Specifically, after obtaining the blendshape coefficients
output by EmoTalk, we perform linear weighting on the
corresponding parameters of 52 FLAME head templates to
obtain the vertex parameters of 5023*3 dimensions. The
formula is as follows:

Vflame =

52∑
i=1

βVi (1)

where V flame is the final output of FLAME head vertex
coordinates, V i is the vertex coordinate of the ith FLAME
head template, and β is the blendshape coefficient vector
output by EmoTalk.

3. Baseline methods
We conducted a comparative analysis of EmoTalk

with three state-of-the-art approaches, namely VOCA[1],
MeshTalk[8], and FaceFormer[2]. To facilitate a com-
prehensive evaluation, we employed two distinct datasets,
namely the RAVDESS and HDTF, both of which are pro-
cessed through our facial blendshape capturing technique to
obtain the ground truth. For each frame in the datasets, we
calculated the blendshape coefficients and mapped them to
the corresponding vertex parameters of the FLAME model
using the transform module. Furthermore, we retrained the

models of the three existing approaches using RAVDESS ,
HDTF and 3D-ETF datasets to improve their performance.

For VOCASET, we used the pre-trained models provided
by VOCA and FaceFormer and retrained the MeshTalk
model to evaluate the vertex error of these three methods
on the VOCA-Test. It is worth noting that due to the ab-
sence of blendshape coefficients in the official VOCASET
dataset and the images containing marked faces incompati-
ble with our blendshape capturing approach, we are unable
to train our model on this dataset. Instead, we directly eval-
uated the EmoTalk model, trained on the HDTF dataset, on
VOCA-Test.

During the evaluation, while the other three methods
computed the error directly between the output vertices and
the ground truth, we needed to use a transfer module to
convert the EmoTalk output from blendshape coefficients
to mesh vertices to ensure comparability with other meth-
ods in the same dimension and eliminate any differences
between output formats.

4. Dataset construction details
In this study, we constructed a large 3D emotional talk-

ing face (3D-ETF) dataset, where facial blendshape is used
as the supervisory signal to reconstruct reliable 3D faces
from 2D images. The facial blendshape capturing method
is fine-tuned by animators to create numerous 3D facial an-
imations from the RAVDESS[7] and HDTF[10] datasets.

Specifically, 1440 videos from the RAVDESS dataset
and 385 videos from the HDTF dataset are processed by
converting them into 30 frames per second and capturing
the facial blendshape for each frame. To enhance the quality
of the dataset and reduce frame-to-frame jitter, a Savitzky-
Golay filter with a window length of 5 and a polynomial
order of 2 is applied to the output blendshape coefficients,
which significantly improved the smoothness of facial ani-
mation. The RAVDESS dataset generated 159,702 frames
of blendshape coefficients, which amounts to approximately
1.5 hours of video content. Meanwhile, the HDTF dataset
generated 543,240 frames of blendshape coefficients, which
equates to approximately 5 hours of video content. All the
generated blendshape coefficients are converted into mesh
vertices using the transform module and included in the
dataset. A supplementary video will demonstrate the ef-
fectiveness of our dataset.

5. Blendshape capture method
Our sophisticated blendshape capture method predicts

corresponding blendshape coefficients from input video
streams using a neural network model, which is then manu-
ally fine-tuned by professional animators to achieve realistic
facial reconstruction results that accurately capture human
emotional expressions.



In this method, we use the “Live Link Face” applica-
tion to collect a dataset consisting of images paired with
corresponding blendshape data. The image preprocessing
involved facial cropping and other necessary transforma-
tions before feeding them into a ResNet [3] architecture.
The ResNet model was employed to produce 52 specific
blendshape values as the output, and these values were con-
strained using the L2 loss function, ensuring precise regres-
sion of facial blendshapes.
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Figure 1. Semantically Meaningful FLAME Head Templates. We create 52 FLAME head templates that correspond to the blendshape
coefficients, to achieve the transformation from the blendshape coefficients to the FLAME head model.


