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As mentioned in the main text, this appendix includes

statistical analysis (Section A), additional experimental results

(Section B), and further qualitative results (Section C).

Supplementary video. In addition to this appendix, we

provide a video on our project page to allow viewing motions

dynamically. In the video, we demonstrate qualitative results

for text-to-motion retrieval on the two datasets KIT [4] and

H3D [1]. Moreover, we illustrate the use case of moment

retrieval on BABEL [5].

Code & Demo. We further provide the source code for training

and evaluation, along with an interactive demo, which we make

publicly available.

A. Statistics

Number of similar text descriptions in the test set. As men-

tioned in Section 4.1 of the main paper, the evaluation protocol

(b) marks retrieved motions as correct if their corresponding

text is similar to the queried text above a threshold of 0.95 (note

that this threshold is different from the one used in training).

Here, we report the total number of pairs that are above this

threshold for each dataset. For KIT, on the 830 sequences of

the test set, there are 344,035 unique pairs of texts (830∗829/2)

from which 2,467 of them are similar (about 0.7% of the data).

For H3D, on the 4,380 sequences of the test set, there are

9,590,010 unique pairs of texts (4380∗4380/2) from which

6,017 of them are similar (about 0.06% of the data).

Percentage of filtered negatives per batch during training.

To complement Tables 4 and 5 of the main paper, in Table A.1,

we compute the amount of negatives that are filtered on average

per batch, depending on the threshold and the batch size. In

our current setting, 17.29% of the negatives are discarded. We

see that this rate remains similar across batch sizes.

B. Additional experimental results

Motion synthesis results. As mentioned in Section 4.1 of the

main paper, we evaluate the synthesis performance of TMR.

In Table A.2, we compare the performance of TMR, TEMOS

Threshold 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

% filtered negatives 98.04 88.04 68.56 48.27 31.54 17.29 7.41 2.78 0.71

Batch size 16 32 64 128

% filtered negatives 17.02 17.29 16.96 17.28

Table A.1. Percentage of filtered negatives per batch in KIT:

We compute the average percentage of negative pairs per batch that

are discarded from the loss computation due to text similarity. The

percentage decreases with higher thresholds as expected (top), but the

batch size does not have a significant impact (bottom).

and Guo et al. [1] under various settings. See the caption for

explanations and comments.

Latent dimensionality. As stated in Section 3.4 of the main

paper, the dimensionality of the latent space is set to d=256

as in TEMOS [3]. In Table A.3, we experiment with this

architectural design choice, and observe that d = 128 brings

overall better performance.

Contrastive-only baseline. As outlined in Section 4.3 of the

main paper, we also experiment with the contrastive model

without negative filtering, and present the results in Table A.4.

The negative filtering overall improves the results both with the

contrastive-only model and with the added synthesis branch

(TMR). We note that the added synthesis branch empirically

improves the results consistently. Similar conclusions were

already made by the text-to-image multi-modal models such

as BLIP [2] and CoCa [9] which improve performance over

contrastive-only CLIP [6] by adding a text synthesis loss.

Moment retrieval. As presented in Section 4.5 of the main pa-

per, we localize a textual query within a motion, by computing

the similarity between the text and several temporal crops of the

motion in a zero-shot manner (i.e., the model was not trained

for this task, nor has it seen BABEL texts). Here, we provide

additional qualitative results, and also report quantitative metrics.

In Figure A.2, we provide complementary qualitative results

to Figure 4 of the main paper. At the right of Figure A.2

(b), we also show the localization potential on four very long

sequences. As the search space gets larger, the similarity plot
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KIT-ML H3D

Motions

Eval
Guo Ret. TEMOS TMR Guo Ret. TEMOS TMR

Real motions 42.25 44.88 49.25 52.41 42.33 67.16

Guo Syn. [1] 36.88 47.00 48.38 45.80 37.73 55.38

TEMOS [3] 43.88 90.50 76.88 40.76 79.71 72.38

TMR 43.50 71.88 89.25 44.67 57.35 92.44

Table A.2. Motion synthesis results: We report R@1 text-to-motion

retrieval performance of generated motions by the synthesis method of

Guo et al. [1] (Guo Syn.), TEMOS [3], and our TMR synthesis branch,

as well as the ‘Real motions’, on both KIT-ML (left) and H3D (right)

benchmarks. Rows are different motion generation methods, columns

are different retrieval evaluation models: retrieval method of Guo et

al. [1] (Guo Ret.), TEMOS, and our TMR retrieval branch. We use the

protocol (d), i.e., 32 gallery size protocol from [1] . We make several

observations: (i) TMR, when used for motion synthesis, performs better

than or similar to Guo Syn. [1] across all 3 retrieval evaluation models,

showing we do not sacrifice synthesis performance. (ii) Evaluation

with retrieval models that can also perform synthesis (TEMOS and

TMR) favors motions generated by their own model. (iii) Certain

numbers are better than Real motions, potentially because generations

are sometimes more faithful to the input text, which may incompletely

describe the real motion, or due to the bias mentioned in (ii).

Latent dim. Text-motion retrieval Motion-text retrieval

d R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

64 18.80 28.67 38.43 6.00 18.07 21.81 31.45 9.50

128 25.90 31.20 40.72 6.00 23.73 27.35 36.39 9.25

256 24.58 30.24 41.93 5.00 19.64 23.73 32.53 9.50

512 23.13 28.43 35.42 7.00 20.36 26.39 33.61 10.50

Table A.3. Latent dimensionality: We experiment with the embedding

space dimensionality, and observe that d=128 performs overall best.

However, in all other experiments, we use d=256 as in TEMOS.

NF R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

Contrastive-only ✗ 19.16 25.54 33.13 8.00

Contrastive-only ✓ 19.76 25.30 36.87 6.00

TMR ✗ 22.17 27.83 36.02 7.00

TMR ✓ 24.58 30.24 41.93 5.00

Table A.4. Contrastive-only without negative filtering: We report

text-to-motion retrieval results on KIT-ML to analyze the impact of

negative filtering (NF) on the contrastive-only baseline. First row is

the supplemental result, the rest are from the main paper.

gets noisier; however, the maximum similarity still occurs at

the ground-truth location (marked in green).

For the qualitative results, we display the similarity, centered

for each frame, for a window size of 20 frames. Here, we

also implement a temporal pyramid approach, where we use a

sliding window, with window sizes varying between 10 and 60

frames, and a stride of 5 frames. For quantitative evaluation, we

first obtain the predicted localization by selecting the window

size and location that gives the best similarity with the text

query. Then, we compute the temporal IoU (intersection over

union) between the ground-truth segment and the predicted

Figure A.1. Moment retrieval (quantitative): We plot the localization

accuracy (y-axis) with various IoU thresholds (x-axis).

one. In Figure A.1, we report the localization accuracy, where

a segment is counted as positive when it has an IoU more

than a given threshold. We see that this simple approach can

achieve reasonable results (20% of accuracy, with a threshold

of 0.4). With a fixed window size of [20, 40, 60] frames, we

obtain [17%, 19%, 14%], respectively. A dedicated localization

method may consider moment proposal generation as in prior

video localization work [7, 8], or a proposal-free approach that

trains directly to regress temporal boundaries.

C. Additional qualitative results

In this section, we show qualitative results on the challenging

H3D dataset for text-to-motion retrieval on the 4 proposed

protocols described in Section 4.1 of the main paper. Protocols

(a)(b) are used in Figures A.3 and A.4; (c) in Figure A.5;

and (d) in Figure A.6. To reiterate, protocols (a) and (b) use

all the test set (4380 motions) as gallery, but (b) marks a

rank correct if the text similarity is above a threshold of 0.95.

Protocol (c) considers the most dissimilar text subset of 100

motions. Protocol (d) is reported for completeness; it follows

[1], and randomly samples batches of 32 motions. All examples

are randomly chosen, (i.e., not cherry picked); therefore, are

representative of the corresponding protocols.

Overall, we observe that our model is capable of retrieving

motions that are semantically similar to the text descriptions.

The performance naturally improves as we move from harder

to easier protocols. Our detailed observations can be found in

the respective figure captions.
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Figure A.2. Moment retrieval (qualitative): To complement Figure 4 of the main paper, (a) we provide six additional temporal localization results

for various text queries on the BABEL dataset. (b) We further visualize six challenging examples when querying on very long motion sequences,

i.e., more than 500 frames (25 seconds).
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Figure A.3. Protocols (a) and (b) using all 4,380 motions in H3D: For each text query, we show the top 10 ranks for the text-to-motion retrieval. Our

model generalizes to the concept of “rocking a baby” in the first example, even though this exact same text was not seen in the training set. In the second

example, our model retrieves motions that are all coherent with the input query. However, according to evaluation protocol (a), the correct motion

is ranked at 31. With the permissive protocol (b), we mark the rank 8 as correct, because their text similarity (TS) is higher than the threshold 0.95.
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Figure A.4. Protocols (a) and (b) using all 4,380 motions in H3D (continued): On both examples, we see that our model retrieves reasonable

motions, although the correct motions are ranked at 10 and 138.
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Figure A.5. Protocol (c) using the most dissimilar 100 texts on H3D: As there are fewer motions than in protocols (a)(b), and they are more

likely to be different, we naturally observe a better performance.
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Figure A.6. Protocol (d) using random batches of size 32 on H3D: As the gallery is very small, the correct motion tends to be at top ranks.
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