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A Additional Experiments
This section provides additional experiments with real-

world and synthetic data. Appendices A.1 and A.2 show
results with each scene from the PhotoTourism dataset for
the essential and fundamental matrices estimation. Ap-
pendix A.3 offers results for curve and circle fitting prob-
lems using synthetic data. Appendix A.4 contains ablation
studies on the conditional probability tables (CPTs), sam-
pling weights, and stopping criteria.

For both of the relative pose problem experiments
(Appendices A.1 and A.2), we use the following scenes
from the PhotoTourism dataset, with a matching score
cutoff of 0.85: 0) brandenburg gate with 43% inliers;
1) palace of westminster with 32% inliers; 2)
westminster abbey with 49% inliers; 3) taj mahal
with 57% inliers; 4) prague old town square
with 32% inliers; and 5) st peters square with
46% inliers; 6) buckingham palace with 45%
inliers; 7) colosseum exterior with 36% in-
liers; 8) grand place brussels with 31% in-

liers; 9) notre dame front facade with 46%
inliers; 10) pantheon exterior with 62% in-
liers; 11) temple nara japan with 60% inliers;
12) trevi fountain with 33% inliers; and 13)
sacre coeur with 51% inliers. As in the main docu-
ment, we use 4K pairs for each scene and repeated each
trial 5 times.

All experiments presented in this document and on the
main paper were performed on an Intel(R) Core(TM) i7-
7820X CPU @ 3.60GHz processor.

A.1 Calibrated relative pose

This subsection presents additional results for the
calibrated relative pose estimation problem, compar-
ing BANSAC and P-BANSAC against the baselines
(RANSAC, NAPSAC, P-NAPSAC, and PROSAC). As es-
timation parameters, we use an error threshold of 1e−3
(normalized points), 1000 maximum iterations, and a con-
fidence of 0.999, and set the BANSAC stopping criteria
threshold τ to 0.01 in BANSAC and 0.1 in P-BANSAC
(same parameters as in the main paper’s results). Results
are shown in Tab. 1.

We observe that, in accuracy, BANSAC and P-BANSAC
are the best methods overall. In execution time, P-BANSAC
is the best, with BANSAC second best in most scenes.

A.2 Uncalibrated relative pose

This subsection presents further results for the uncal-
ibrated relative pose estimation problem, using the same
baselines as in the previous subsection. As estimation pa-
rameters, we use an error threshold of 0.5, 10000 maximum
iterations, and a confidence threshold of 0.999, and set the
BANSAC stopping criteria threshold τ to 0.01 in BANSAC
and 0.1 in P-BANSAC (same parameters as in the main pa-
per’s results). Results are shown in Tab. 1.

The results obtained are similar to those obtained in es-
timating the essential matrix. BANSAC is the best method
in accuracy, followed by P-BANSAC in most scenes. Both
are also the fastest methods overall.
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Table 1. Experimental results for the calibrated and uncalibrated relative pose estimation problems for each scene in the PhotoTourism
dataset.

Calibrated Relative Pose Estimation (essential matrix estimation) Uncalibrated Relative Pose Estimation (fundamental matrix estimation)

RANSAC NAPSAC P-NAPSAC PROSAC BANSAC P-BANSAC RANSAC NAPSAC P-NAPSAC PROSAC BANSAC P-BANSAC

Rotation mAA (10◦) ↑

0 0.711 0.245 0.740 0.754 0.773 0.775 0.574 0.260 0.585 0.593 0.608 0.593
1 0.555 0.218 0.604 0.612 0.624 0.625 0.482 0.253 0.504 0.514 0.546 0.537
2 0.714 0.417 0.709 0.714 0.719 0.717 0.686 0.455 0.684 0.686 0.693 0.689
3 0.866 0.259 0.797 0.820 0.866 0.848 0.863 0.567 0.859 0.857 0.883 0.863
4 0.322 0.142 0.290 0.302 0.331 0.311 0.269 0.111 0.267 0.246 0.280 0.264
5 0.759 0.251 0.745 0.772 0.803 0.804 0.628 0.336 0.617 0.617 0.661 0.642
6 0.684 0.216 0.658 0.693 0.730 0.724 0.569 0.275 0.566 0.571 0.605 0.576
7 0.434 0.136 0.448 0.449 0.467 0.468 0.374 0.191 0.375 0.377 0.409 0.394
8 0.357 0.133 0.359 0.368 0.380 0.379 0.301 0.186 0.295 0.300 0.317 0.306
9 0.669 0.271 0.698 0.716 0.730 0.731 0.582 0.258 0.593 0.599 0.635 0.625
10 0.762 0.204 0.718 0.707 0.786 0.784 0.467 0.306 0.420 0.434 0.480 0.438
11 0.829 0.255 0.797 0.815 0.838 0.816 0.762 0.484 0.746 0.744 0.783 0.728
12 0.532 0.217 0.568 0.579 0.605 0.598 0.458 0.212 0.468 0.471 0.501 0.490
13 0.827 0.201 0.836 0.844 0.867 0.862 0.804 0.418 0.819 0.819 0.846 0.839

Translation mAA (10◦) ↑

0 0.581 0.150 0.599 0.613 0.643 0.647 0.363 0.0970 0.360 0.377 0.394 0.376
1 0.504 0.162 0.548 0.558 0.565 0.567 0.418 0.183 0.436 0.446 0.480 0.466
2 0.494 0.184 0.480 0.486 0.506 0.501 0.377 0.121 0.373 0.377 0.390 0.384
3 0.641 0.116 0.544 0.570 0.649 0.626 0.610 0.265 0.597 0.596 0.635 0.609
4 0.282 0.0970 0.244 0.253 0.292 0.267 0.176 0.0390 0.167 0.153 0.192 0.167
5 0.601 0.141 0.570 0.601 0.642 0.635 0.351 0.121 0.328 0.331 0.379 0.357
6 0.622 0.178 0.590 0.627 0.661 0.651 0.274 0.110 0.281 0.287 0.311 0.294
7 0.403 0.107 0.409 0.409 0.432 0.434 0.257 0.100 0.252 0.259 0.296 0.279
8 0.274 0.0850 0.267 0.277 0.297 0.296 0.140 0.0590 0.137 0.140 0.151 0.141
9 0.592 0.209 0.614 0.631 0.655 0.662 0.413 0.150 0.416 0.430 0.461 0.456
10 0.611 0.114 0.540 0.524 0.620 0.620 0.213 0.0770 0.169 0.180 0.214 0.185
11 0.617 0.0830 0.549 0.563 0.630 0.600 0.378 0.108 0.338 0.332 0.389 0.323
12 0.417 0.122 0.446 0.453 0.491 0.486 0.217 0.0460 0.215 0.215 0.247 0.235
13 0.798 0.173 0.792 0.800 0.837 0.832 0.757 0.329 0.761 0.759 0.792 0.777

Avg. execution time [ms] ↓

0 26.6 40.3 19.9 20.5 17.3 17.4 15.4 29.4 10.9 11.8 12.6 9.75
1 34.9 43.3 29.1 31.1 21.7 20.6 21.9 30.2 18.8 20.1 14.6 12.3
2 17.9 35.8 15.4 15.2 10.1 10.7 10.1 25.9 12.6 9.67 5.84 5.43
3 13.0 37.1 9.48 9.49 9.02 8.02 7.90 25.5 5.76 5.60 6.72 4.49
4 33.5 42.4 28.8 28.8 17.2 15.9 20.7 28.8 18.4 18.1 11.6 8.82
5 22.1 37.9 17.3 16.8 15.8 15.6 12.7 24.6 9.39 9.29 11.5 8.92
6 28.0 39.9 21.7 23.5 18.1 17.8 14.4 27.1 9.17 12.1 10.6 8.29
7 32.4 42.2 28.1 29.9 17.1 16.5 19.4 27.5 18.5 18.8 9.86 8.81
8 37.6 43.2 32.7 34.4 19.7 19.4 22.3 26.3 20.1 21.2 11.7 10.3
9 26.6 40.1 21.2 22.0 16.4 16.4 14.7 28.3 12.1 12.4 10.1 8.12
10 13.4 38.2 8.96 10.7 9.41 9.73 5.67 12.3 4.43 4.72 5.08 3.34
11 13.8 36.9 8.90 8.98 9.33 8.85 5.16 16.3 3.71 3.45 4.51 2.61
12 37.1 43.2 32.0 32.6 22.7 23.2 21.4 30.8 19.2 19.4 14.4 13.0
13 21.4 41.3 17.1 16.8 14.7 14.8 11.3 35.0 9.74 9.15 8.61 7.12

Seq.

A.3 Synthetic data

We consider two simple problems: curve and circle-
fitting. For each, we ran several experiments, varying the in-
lier rate between 15 and 50%. Each experiment has 300 data
points ranging between [−1, 1]. Inliers are disturbed by a
Gaussian noise of mean 0 and variance 0.02, and outliers are
modeled by a uniform distribution with a maximum abso-
lute value of 1.0. We evaluate BANSAC against RANSAC
and BaySAC, which we implemented from scratch since no
code is available. As estimation parameters, we use an er-
ror threshold value of 0.02, 3000 maximum iterations, and
an estimation confidence of 0.99. In BANSAC, the initial
probabilities P0 are set to 0.5 for all data points, and the
stopping criterion threshold τ is set to 0.01. We measure

the root mean squared error (RMSE) of the geometric dis-
tance of points in the estimated model to the desired model
and the number of iterations made. We present the mean
values obtained after 1000 randomly generated trials. The
results are shown in Fig. 1.

We observe that BANSAC has an accuracy similar to or
better than the baselines requiring significantly fewer iter-
ations, even for lower inlier rates. Figure 2 illustrates the
BANSAC probability update for the curve fitting problem.

A.4 Ablation studies

Next, we test different configurations for three compo-
nents of the proposed algorithm. We present experiments
using diverse conditional probability tables (CPTs) param-
eters, various activation functions for sampling, and com-
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Figure 1. Experimental results for the curve (left) and circle (right)
fitting. We compare RANSAC, BaySAC, and BANSAC based on the
number of iterations and RMS error for different inlier rates.
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Figure 2. Example of BANSAC inlier probability update over iter-
ations for a curve fitting problem (color code at the right). In the
first row, from left to right, we show iterations 0, 2, and 4. Second
row shows iteration 9, 11, and 14.

binations of different stopping criteria. The results were
obtained using PhotoTourism sequence sacre coeur (all
pairs) for the uncalibrated relative pose problem (funda-
mental matrix estimation), using an error threshold of 0.5,
10000 maximum iterations, and a confidence of 0.999, as in
the main paper. BANSAC stopping criterion threshold τ is
set to 0.01. We evaluate the mAA of the rotation and trans-
lation errors at 5 and 10 degrees and the average execution
time.

A.4.1 Conditional probability tables

To infer P (xkn = inlier | c1:kn ) we need to define the CPTs
of P (ckn | xk−1n ) and P (xk−1n | ckn, xk−1n ) for the 1st or-
der Markov assumption. We present these CPTs in Tab. 2.
The values for the CPT of P (xk−1n | ckn, xk−1n ) were ob-
tained empirically after testing different variations. We
found that probability update is robust to slight variations
of the reported parameters. The parameters of the CPT of
P (ckn | xk−1n ) are defined using a function γ(·). We want

Table 2. Conditional probability table of P (cnk |xn
k−1) and

P (xn
k |cnk ,xn

k−1).

ckn xk−1n P (ckn | xk−1n )

Inlier Inlier γ(ϵk)
Inlier Outlier 1− γ(ϵk)

xkn xk−1n ckn P (xkn | ckn, xk−1n )

Inlier Inlier Inlier 1.0
Inlier Inlier Outlier 1.0
Inlier Outlier Inlier 0.2
Inlier Outlier Outlier 0.0

Table 3. Evaluation of BANSAC using different activation func-
tions to define the parameters of the conditional probability table
of P (ckn | xk−1

n ).

Metrics Activation functions

γ1(ψ) γ2(ψ) γ3(ψ)

Rotation mAA (5◦) ↑ 0.836 0.793 0.790
Rotation mAA (10◦) ↑ 0.864 0.827 0.827
Translation mAA (5◦) ↑ 0.775 0.738 0.732
Translation mAA (10◦) ↑ 0.825 0.795 0.791
Avg. execution time [ms] ↓ 13.9 17.4 17.5

this function to give a high probability to classifications
made by good models and vice versa. Since the quality of
a model is defined by its inlier ratio, we define this function
as γ(ϵk), where ϵk is the inlier ratio at iteration k. We test
the following functions γ(ϵk) (variations of these functions
with different values were tested, we are listing the ones that
produced the best results):

γ1(ϵ
k) =

{
0.62 · ϵk + 0.5, ϵk < 0.7143

0.2 · ϵk + 0.8, otherwise
, (1)

γ2(ϵ
k) =

0.5

0.5 + e−10·(ϵk−0.3)
, and (2)

γ3(ϵ
k) = tanh(3 · ϵk). (3)

We present results using these functions with BANSAC and
P-BANSAC in Tab. 3.

We achieved the best results in accuracy and execution
time when using γ1(ψ). Based on these experiments, we
decided to use γ1(ψ) in P (ckn | xk−1n ) in all the experiments.

In the experiment shown in the main paper where we use
the 2nd and 3rd orders of the Markov assumption, we use
the CPTs shown in Tabs. 4 and 5, respectively. Similar
to the CPT for the 1st order of the Markov assumption, the
outlined parameters were obtained empirically.

A.4.2 Weighted sampling

In each iteration k, we perform a sampling weighted by
the probabilities estimated in the previous iteration Pk−1.
Instead of simply using the probability values directly, we
test the use of activation functions to increase the range of
weights. The goal is to increase the chances of choosing
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Table 4. Conditional probability table of P (xk
n | ckn, xk−2:k−1

n ).

xkn xk−1n xk−2n ckn P (xkn | ckn, xk−2:k−1n )

Inlier Inlier Inlier Inlier 1.0
Inlier Inlier Inlier Outlier 0.8
Inlier Inlier Outlier Inlier 0.9
Inlier Inlier Outlier Outlier 0.7
Inlier Outlier Inlier Inlier 0.2
Inlier Outlier Inlier Outlier 0.1
Inlier Outlier Outlier Inlier 0.1
Inlier Outlier Outlier Outlier 0.0

Table 5. Conditional probability table of P (xk
n | ckn, xk−3:k−1

n ).

xkn xk−1n xk−2n xk−3n ckn P (xkn | ckn, xk−3:k−1n )

Inlier Inlier Inlier Inlier Inlier 1.0
Inlier Inlier Inlier Inlier Outlier 0.8
Inlier Inlier Inlier Outlier Inlier 0.9
Inlier Inlier Inlier Outlier Outlier 0.7
Inlier Inlier Outlier Inlier Inlier 0.6
Inlier Inlier Outlier Inlier Outlier 0.5
Inlier Inlier Outlier Outlier Inlier 0.4
Inlier Inlier Outlier Outlier Outlier 0.2
Inlier Outlier Inlier Inlier Inlier 0.3
Inlier Outlier Inlier Inlier Outlier 0.2
Inlier Outlier Inlier Outlier Inlier 0.1
Inlier Outlier Inlier Outlier Outlier 0.3
Inlier Outlier Outlier Inlier Inlier 0.2
Inlier Outlier Outlier Inlier Outlier 0.1
Inlier Outlier Outlier Outlier Inlier 0.05
Inlier Outlier Outlier Outlier Outlier 0.0

points with higher inlier probabilities. We tested the fol-
lowing activation functions (different functions were tested,
and we are showing the ones that gave the best results):

ρ1(ψ) = ψ · 100 (4)

ρ2(ψ) =

{
100 · ψ ψ > 0.3

10 · ψ otherwise
, (5)

ρ3(ψ) =
100

1 + e−10·(ψ−0.5)
(6)

ρ4(ψ) = 130 · tanh(ψ) (7)

where ψ ≜ P (xkn = inlier | C1:k
n ) is the estimated proba-

bility for the nth data point at iteration k. In Tab. 6, we show
results using these activations functions in BANSAC.

Of the tested functions, only ρ1(ψ) is linear. This func-
tion equally converts all points probabilities to the desired
sampling range. The remaining give greater weights to
points with higher probabilities and vice versa. Overall, we
observed that ρ1(ψ) was the one that gave better results in
accuracy and execution time. Based on these experiments,
we chose to use ρ1(ψ) in all other experiments.

Table 6. Evaluation of BANSAC using different activation func-
tions to generate sampling weights.

Metrics Sampling activation functions

ρ1(ψ) ρ2(ψ) ρ3(ψ) ρ4(ψ)

Rotation mAA (5◦) ↑ 0.836 0.825 0.823 0.834
Rotation mAA (10◦) ↑ 0.864 0.853 0.851 0.861
Translation mAA (5◦) ↑ 0.775 0.760 0.758 0.776
Translation mAA (10◦) ↑ 0.825 0.813 0.811 0.826
Avg. execution time [ms] ↓ 13.9 13.5 13.6 14.2

Table 7. Evaluation of BANSAC with different stopping criteria.

Stopping Criteria Results

RANSAC SPRT PROSAC BANSAC
Rotation Translation Time

mAA(5◦) mAA(10◦) mAA(5◦) mAA(10◦) Avg. [ms]

✓ 0.845 0.868 0.792 0.837 16.2
✓ 0.837 0.864 0.775 0.825 13.9

✓ 0.839 0.865 0.782 0.829 15.1
✓ 0.850 0.870 0.818 0.854 33.5

✓ ✓ 0.845 0.867 0.793 0.837 16.1
✓ ✓ 0.836 0.864 0.775 0.825 13.9

✓ ✓ 0.838 0.864 0.782 0.829 14.4

A.4.3 Stopping criteria

Finally, we assess the different kinds and combinations of
stopping criteria we can use with our method: RANSAC,
SPRT, PROSAC, BANSAC, and BANSAC combined with
RANSAC, SPRT, or PROSAC. We show results using these
different combinations of stopping criteria in Tab. 7.

We observe that, although BANSAC stopping criteria
ensure the output results are accurate, it is slow. However,
when we combine our stopping condition with others, we
consistently improve execution time with a slight drop in
accuracy.

B Other Markov Assumptions
In this section, we present new derivations on probability

updates. We show how to get exact inferences for second
and third-order Markov assumptions.

B.1 Second-order Markov assumption

For the second-order assumption, in addition to the con-
ditional independence constraints presented in the main pa-
per, we have

xjn ⊥ x0:j−3n | xj−1n , xj−2n , cjn ∀j, (8)

which means

P (xjn | x0:j−1n , cjn) = P (xjn | xj−2:j−1n , cjn), ∀j. (9)

Now, similar to what is done in the main document, by
applying the chain rule of probabilities, we write the joint
probability at iteration k as

P̃ (x0:kn , c1:kn ) = P (x0n)

k∏
j=1

ϕ̃(xjn, c
j
n), (10)
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Algorithm 1: BANSAC algorithm outline. In the algorithm below, I means inlier and O outlier.
Input – Data Q, and without pre-computed scores
Output – Best model θ∗, and C∗

1 k ← 1;
2 Φ+

n ← 0.5, ∀n ; ▷ for xk
n = true (a pre-computed score can be used here)

3 Φ−
n ← 0.5, ∀n ; ▷ for xk

n = false (a pre-computed score can be used here)

4 Pn =
Φ+
n

Φ
+
n+Φ

−
n

; ▷ current weights used for sampling

5 while k < K do
6 ...
7 Other RANSAC steps as listed in the main paper;
8 ...
9 for all n do

10 if ckn = I then
11 Φ̂+

n ← P (xk
n = I, ckn = I, xk−1

n = I)P (ckn = I, xk−1
n = I)Φ+

n + P (xk
n = I, ckn = I, xk−1

n = O)P (ckn = I, xk−1
n = O)Φ−

n ;
12 Φ̂−

n ← P (xk
n = O, ckn = I, xk−1

n = I)P (ckn = I, xk−1
n = I)Φ+

n + P (xk
n = O, ckn = I, xk−1

n = O)P (ckn = I, xk−1
n = O)Φ−

n ;
13 else
14 Φ̂+

n ← P (xk
n = I, ckn = O, xk−1

n = I)P (ckn = O, xk−1
n = I)Φ+

n + P (xk
n = I, ckn = O, xk−1

n = O)P (ckn = O, xk−1
n = O)Φ−

n ;
15 Φ̂−

n ← P (xk
n = O, ckn = O, xk−1

n = I)P (ckn = O, xk−1
n = I)Φ+

n + P (xk
n = O, ckn = O, xk−1

n = O)P (ckn = O, xk−1
n = O)Φ−

n ;
16 Φ+

n ← Φ̂+
n ;

17 Φ−
n ← Φ̂−

n ;

18 Pn =
Φ+
n

Φ
+
n+Φ

−
n

;

19 ...
20 Other RANSAC steps as listed in the main paper;
21 ...

where

ϕ̃(xj
n, c

j
n) =

{
P (xj

n | xj−2:j−1
n , cjn)P (cjn | xj−1

n ), j ≥ 2

P (x1
n | x0

n, c
1
n)P (c1n | x0

n), j = 1
.

(11)
We use P̃ (.) to distinguish from the joint probability derived
in the main document. Following the same steps derived in
the main document, from Eqs. 10 and 11 the exact inference
is given by

P (xkn = inlier | C1:k
n ) = αΦ̃(xkn = inlier, x0:k−1n , C1:k

n ),
(12)

where again α is the normalization factor, and

Φ̃(xkn, x
0:k−1
n , C1:k

n ) =
∑
xk−1
n

Φ̃†(xkn, x
0:k−1
n , C1:k

n ) (13)

where

Φ̃†(xkn, x
0:k−1
n , C1:k

n ) =∑
xk−2
n

ϕ̃(xkn, C
k
n)

∑
xk−3
n

ϕ̃(xk−1n , Ck−1n )

· · ·
∑
x1
n

ϕ̃(x3n, C
3
n)

∑
x0
n

ϕ̃(x2n, C
2
n)ϕ̃(x

1
n, C

1
n)P (x

0
n). (14)

As in the main document, a convenient result of Eq. 14 is
that Φ̃†(.) can be calculated recursively as follows:

Φ̃†(xkn, x
0:k−1
n , C1:k

n ) ={∑
xk−2
n

ϕ̃(xkn, C
k
n)Φ̃

†(xk−1n , x0:k−2n , C1:k−1
n ) k ≥ 2

ϕ̃(x1n, C
1
n)P (x

0
n) k = 1

.

(15)

For the second-order Markov assumption experiments,
the only difference compared to what is described for the
first-order is the use of the conditional probability in Eq. 12
as the sampling weights.

B.2 Third-order Markov assumption

For the third-order Markov assumption, we have the con-
ditional independence constraints

xjn ⊥ x0:j−4n | xj−1n , xj−2n , xj−3n , cjn ∀j, (16)

which means

P (xjn | x0:j−1n , cjn) = P (xjn | xj−3:j−1n , cjn), ∀j. (17)

Again, by applying the chain rule of probabilities, we write
the joint probability at iteration k as

˜̃
P (x0:kn , c1:kn ) = P (x0n)

k∏
j=1

˜̃
ϕ(xjn, c

j
n), (18)
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where

˜̃
ϕ(xj

n, c
j
n) =


P (xi

n | xj−3:j−1
n , cjn)P (cjn | xj−1

n ), j ≥ 3

P (x2
n | x0:1

n , c2n)P (c2n | x1
n), j = 2

P (x1
n | x0

n, c
1
n)P (c1n | x0

n), j = 1

.

(19)
Following the same steps shown in the main document,
from Eqs. 18 and 19 the exact inference is given by

P (xkn = inlier | C1:k
n ) = α

˜̃
Φ(xkn = inlier, x0:k−1n , C1:k

n ),
(20)

where again α is the normalization factor, and

˜̃
Φ(xkn, x

0:k−1
n , C1:k

n ) =
∑
xk−1
n

∑
xk−2
n

˜̃
Φ
†
(xkn, x

0:k−1
n , C1:k

n ),

(21)

where

˜̃
Φ
†
(xkn, x

0:k−1
n , C1:k

n ) =∑
xk−3
n

˜̃
ϕ(xkn, C

k
n)

∑
xk−4
n

˜̃
ϕ(xk−1n , Ck−1n ) · · ·

∑
x1
n

˜̃
ϕ(x4n, C

4
n)

∑
x0
n

˜̃
ϕ(x3n, C

3
n)
˜̃
ϕ(x2n, C

2
n)
˜̃
ϕ(x1n, C

1
n)P (x

0
n).

(22)

Again, we can write Eq. 22 in a recursive way:

˜̃
Φ
†
(xkn, x

0:k−1
n , C1:k

n ) =
∑
xk−3
n

˜̃
ϕ(xkn, C

k
n)

˜̃
Φ
†
(xk−1n , x0:k−2n , C1:k−1

n ) k ≥ 3˜̃
ϕ(x2n, C

2
n)
˜̃
ϕ(x1n, C

1
n)P (x

0
n) k = 2˜̃

ϕ(x1n, C
1
n)P (x

0
n) k = 1

.

(23)

Note for k = 1, Eq. 22 does not sum in x−2n , since there is
no such variable.

Finally, the weights for the sampling are taken from the
inference in Eq. 20.

B.3 Probability Updates Pseudo-code

The probability updates derived in this code are easy to
implement. An algorithm with the pseudo-code for the first-
order Markov assumption is shown in Algorithm 1, in which
probabilities are taken from Tab. 2. The second and third-
order constraints are derived similarly.
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