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The supplementary material contains (1) a proof that
LDP-FEAT satisfies ϵ-LDP, (2) additional experimental re-
sults on Aachen night-time localization and Structure-from-
Motion (SfM), and (3) an analysis of the paper’s assump-
tions.

S1. Local Differential Privacy of LDP-FEAT

Here, we prove that LDP-FEAT satisfies ϵ-LDP. For clar-
ity, we first prove that ω-SM satisfy ω-LDP and the proof
for LDP-FEAT follows very similarly.

S1.1. Theorem 1 (ω-Subset satisfies ϵ-LDP)

For any inputs v1 and v2, and their output Z1 and
Z2 returned by ω-SM, there are four possible scenar-
ios {v1∈Z1, v2∈Z2}, {v1 /∈Z1, v2∈Z2}, {v1∈Z1, v2 /∈Z2},
{v1 /∈Z1, v2 /∈Z2}, each with different probability distribu-
tions. Below, we show that the probability inequality re-
quired by ϵ-LDP, i.e. Eq. (3) of the main paper, is satisfied
for all the four scenarios.
1) {v1∈Z1, v2∈Z2}. In this case,
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meaning that Pr(Z1|v1)=Pr(Z2|v2), hence Pr(Z1|v1) ≤
eϵ Pr(Z2|v2) holds.
2) {v1 /∈Z1, v2∈Z2}. In this case,
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meaning that Pr(Z1|v1) = e−ϵ Pr(Z2|v2), hence
Pr(Z1|v1) ≤ eϵ Pr(Z2|v2) holds since ϵ > 0.

3) {v1∈Z1, v2 /∈Z2}. In this case,
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meaning that Pr(Z1|v1) = eϵ Pr(Z2|v2), hence
Pr(Z1|v1) ≤ eϵ Pr(Z2|v2) holds.
4) {v1 /∈Z1, v2 /∈Z2}. In this cases,
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meaning that Pr(Z1|v1)=Pr(Z2|v2), hence Pr(Z1|v1) ≤
eϵ Pr(Z2|v2) holds.
This concludes our proof.

S1.2. Theorem 2 (LDP-FEAT satisfies ϵ-LDP)

For any input descriptor d, the output set Z are obtained
by: first map d to an element (let us denote it as d̄) in the
database K, and then d̄ is mapped to the random set Z .
Hence,

Pr(Z|d) =
∑
d̄∈K

Pr(Z, d̄|d)

=
∑
d̄∈K

Pr(Z|d̄) Pr(d̄|d).
(S5)

Since the mapping from d to d̄ is deterministic – it is
mapped to the nearest neighbor d′ in the database, we have

Pr(d̄|d) =

{
1, if d̄ = d,

0, if d̄ ̸= d.
(S6)

Plugging Eq. (S6) into Eq. (S5) yields

Pr(Z|d) = Pr(Z|d′) (S7)



DB Size Privacy # Desc. Day Night
|K| ϵ m 0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦ 0.25m, 2◦ 0.5m, 5◦ 5.0m, 10◦

Accuracy
Upper
Bound

128k ∞ 1 73.2 82.8 88.1 24.6 28.8 33.5
256k ∞ 1 76.8 86.3 91.6 28.8 34.6 42.4
512k ∞ 1 78.0 87.4 93.3 33.5 40.8 51.3

1024k ∞ 1 79.7 89.9 94.9 36.1 42.4 51.8
21024 ∞ 1 84.1 91.7 96.4 50.3 61.8 73.8

Impact of
Database

Size

128k 10 2 39.4 45.4 50.2 1.60 2.10 3.70
256k 10 2 42.1 49.3 54.4 3.70 5.20 6.30
512k 10 2 37.4 43.2 48.1 2.10 3.70 4.70

1024k 10 2 33.3 37.1 42.1 2.10 3.70 3.70
21024 10 2 0.00 0.00 0.00 0.00 0.00 0.00

Privacy
Guarantee

256k 10 2 42.1 49.3 54.4 3.70 5.20 6.30
256k 12 2 69.5 78.4 84.1 16.8 19.4 23.6
256k 14 2 75.1 84.7 89.4 23.0 27.7 33.0
256k 16 2 75.4 85.3 90.2 23.0 27.2 31.9
512k 10 4 42.1 49.6 55.0 5.20 7.90 9.90
512k 12 4 69.4 77.9 84.6 19.4 22.5 26.2
512k 14 4 73.9 84.5 90.2 23.6 29.8 34.6
512k 16 4 76.1 85.0 90.4 24.6 29.8 34.0

Impact of
Subset

Size

256k 10 1 34.6 39.7 44.7 2.60 3.70 4.70
256k 10 2 42.1 49.3 54.4 3.70 5.20 6.30
256k 10 4 42.1 49.0 55.1 3.70 4.70 5.20
256k 10 8 39.1 46.4 51.8 4.70 5.80 6.30
256k 10 16 32.8 38.0 44.3 2.60 2.60 3.70

Table S1: Aachen Day-Night Localization Challenge.

For any input descriptor d1 and d2, their nearest neigh-
bor d′1 and d′2, and their output Z1 and Z2, there are four
possible scenarios {d′1∈Z1, d

′
2∈Z2}, {d′1 /∈Z1, d

′
2∈Z2},

{d′1∈Z1, d
′
2 /∈Z2}, {d′1 /∈Z1, d

′
2 /∈Z2}, each with different

probability distributions. Since Z1 and Z2 are sampled us-
ing the ω-SM, we have shown above that Pr(Z1|d′1) ≤
eϵPr(Z2|d′2) holds for all the four scenarios, and given
Eq. (S7), we have Pr(Z1|d1) ≤ eϵPr(Z2|d2). This means
that LDP-FEAT satisfies ϵ-LDP.

S2. Additional Results

S2.1. Aachen Night Localization

Similarly to the Tab.2 of the main paper, we report in
Tab. S1 the localization accuracy for night-time queries in
the Aachen Day-Night localization challenge. Overall, we
observe a degradation of performance compared to the day-
time queries. This is mainly because our database K was
built from the Aachen reference images which contain day-
time images only. As aforementioned, this causes a large
quantization error ∆d in LDP-FEAT, which certainly en-

hances privacy protection but compromises the utility. We
leave the pursuit of a better privacy-utility trade-off for
night-time localization as a future work.

S2.2. Structure-from-Motion

We further demonstrate the utility of LDP-FEAT on
Structure-from-Motion, as shown in Fig. S1. We adopt
COLMAP [2] for SfM by customizing its feature extraction
and matching using LDP-FEAT. As an indicator for SfM
performance, we report the number of registered images,
the number of reconstructed sparse 3D points, the average
keypoint track length, and the average reprojection error.

We report results on the “South Building” and “Foun-
tain” scene from the 3D reconstruction benchmark [3]. We
first report the results for (|K| = 21024, ϵ = ∞, m = 1).
This corresponds to the oracle setting where only the raw
descriptor is sent without any privacy protection, and which
serves a performance upper bound. We then use a dictionary
with 512k descriptors, i.e. (|K| = 512k, ϵ = ∞, m = 1)
where the quantization step, i.e. mapping the raw descriptor
d to its nearest neighbor d′, introduces a degree of privacy



Scene
Dict. Size Privacy # Desc. Reg. Sparse Track Reproj.

|K| ϵ m Images Points Length Error

South
Building

21024 ∞ 1 128 110,714 5.66 1.29
512k ∞ 1 128 62,194 4.85 1.12
512k 10 4 88 8,668 3.56 0.85
512k 10 8 75 10,554 3.66 1.05
512k 10 16 123 25,451 3.62 0.89
512k 10 32 123 26,760 3.52 0.94
512k 10 64 124 21,596 3.31 1.28

Fountain

21024 ∞ 1 11 15,332 4.42 2.82
512k ∞ 1 11 8,612 3.80 2.39
512k 10 4 11 983 2.86 1.26
512k 10 8 11 1,827 2.98 1.35
512k 10 16 11 2,598 3.03 1.50
512k 10 32 11 3,078 3.02 1.52
512k 10 64 11 3,242 2.89 1.41

Figure S1: Local Feature Evaluation Benchmark. Structure-from-Motion results using LDP-FEAT with different configurations.

Dim Success Rate (%)
m N=50 N=20 N=10 N=5
4 93.89 95.60 96.61 97.46

16 87.27 90.54 92.73 94.38

Table S2: Intersecting Adversarial Subspaces.

protection and thus degrades the performance accordingly.
Next, we fix |K| = 512k and ϵ = 10, while increasing m
from 4 to 64. The performance varies, and we observe that
m=32 yields the best performance. Overall, one observes
that good SfM results are obtained from LDP-FEAT under
different settings; in particular, most of the cameras are suc-
cessfully registered, despite the reconstructed points being
sparser. We demonstrate the qualitative reconstruction re-
sults in Fig. S1.

S3. Analysis of Assumptions
S3.1. Intersecting Adversarial Subspaces

As discussed in the paper, our proposed Database and
Clustering attacks are based on the following key empiri-
cal assumption: a low-dimensional hybrid adversarial affine
subspace D likely only intersects the high-dimensional de-
scriptor manifold at m

2 +1 points corresponding to the origi-
nal descriptor d and the adversarial descriptors {a1, ..., am

2
}

that were sampled from the database. Here, we generate
subspaces for 100K descriptors and report how often our
assumption holds, i.e., for each subspace, we select the top
N database descriptors closest to the subspace, and match
them to the m

2 +1 descriptors forming the subspace. Us-

Dim=2 Dim=4 Dim=8 Dim=16
97.42% 94.30% 85.46% 73.03%

Table S3: Clustering Attack Collisions.

ing the standard ratio test (>0.8) we report the percentage
of successful matches in Tab. S2. The high success rates
empirically validate our assumption regarding the rareness
of intersections beyond the m

2 +1 forming descriptors. We
also note that our assumption is implied by the success of
feature matching in [1].

S3.2. Clustering Attack Collisions

For our clustering attack, we assume that the attacker
does not have access to the database of real-world descrip-
tors W from which adversarial descriptors ai=1,...,m2

for
subspace D are sampled, but does have access to an addi-
tional set of adversarial affine subspaces Q that were lifted
with the same database W . We can identify the subset of
subspaces Q′ ∈ Q that were lifted using one or more of
the same adversarial descriptors as D, by noting that each
subspace in Q′

j ∈ Q′ intersects with D. Assuming that
Q is sufficiently large such that all ai’s were used to lift at
least one of the subspaces in Q′, this indicates that the min-
imal point-to-subspace distance minj dist(ai, Q

′
j) = 0 for

i={1, ..., m
2 }. On the other hand, since Q′ is selected with-

out any knowledge or specific treatments on d, it is expected
that minj dist(d,Q

′
j) ≫ 0. In this discrepancy lies the

crux of our attack – while minj dist(âi, Q
′
j) > 0 for our

estimates of ai, âi, we expect that minj dist(d̂, Q
′
j) ≫

minj dist(âi, Q
′
j). Hence, we compute the score si for



Figure S2: Inlier Attack.

each d̂i as si = minj dist(d̂i, Q
′
j) and the largest si yields

our estimate for d. We note that it is not impossible that
Q′ may contain a database descriptor that is close to d too,
but the probability of such a collision is low thanks to the
high dimension of descriptors. In Tab. S3, we validate this
assumption by lifting all the descriptors of our 10 test im-
ages to adversarial subspaces and reporting the percentage
of them that have no collisions in our attack.

S3.3. Sensitivity of Inlier Content

Since inlier correspondences emerge from RANSAC in
the geometric tasks, one natural attack one may think of is
leveraging these inlier features to reveal the image content;
we term this as inlier attack. We note that this attack is
generally applicable to all privacy protocols that are capa-
ble of geometric utility tasks where RANSAC returns in-
liers, e.g. ours and [1]. However, RANSAC inliers typically
consist of only static background scenes without dynamic
foreground (e.g. faces). We clarify that the privacy protec-
tion mainly targets at the foreground in both our and [1]’s
problem setup, and thus the inlier attack was not a concern.
Nonetheless, we perform inlier attack here and show exam-
ple result in S2. As expected, the attack works only for the
background bridge, but not for the foreground faces.
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