
Surface Normal Clustering for Implicit Representation of Manhattan Scenes

Supplementary material

Nikola Popovic1, Danda Pani Paudel1,2, Luc Van Gool1,2

1Computer Vision Laboratory, ETH Zurich, Switzerland
2INSAIT, Sofia University, Bulgaria

{nipopovic, paudel, vangool}@vision.ee.ethz.ch

A. Supplementary Overview

This supplementary material provides additional details,

which complement the main paper. We first give additional

details about our implementation and experimental setup in

Section B. In Section C, we complement the results from the

main paper by showing additional comparisons and stud-

ies. Furthermore, Section D comments about the limitations

and failures of our approach. Finally, we provide additional

qualitative examples in Section E.

B. Implementation Details

In this paragraph we describe the experimental setup

when using the InstantNGP backbone. We use a hash ta-

ble of size 219 containing 16 levels with 2 features per

level, maximum grid resolution of 2048, and an occupancy

grid of resolution 128. We jointly train the neural network

weights and the hash table entries by applying Adam with

ϵ = 10−15 and a learning rate of 10−2. We also apply

L2 regularization with a factor of 10−6, but only on neu-

ral network weights. These choices are based on sugges-

tions in [5]. Also, for the sake of efficiency, we update the

density grid after every 16 steps similarly to the procedure

described in [5]. To further stabilize the training we also use

the opacity regularization [4] with a factor of 10−3, as well

as gradient norm clipping with a factor of 0.05. We also use

a cosine annealing learning rate scheduler and perform each

training on 30k iterations with batch size 8190.

When it comes to our proposed method we set the loss

weights λctr = λort = 2 · 10−3 in the case of Hypersim,

1 · 10−2 in the case of ScanNet, and 5 · 10−4 in the case

of Replica. We turn on Lort and Lctr after 500 steps, and

linearly increase their λ weights to the specified values over

the next 2500 steps. Also, when using methods which rely

on explicit surface normals, we randomly sample rays for

one-third of every batch size and select their left and up-

per pixel neighbor to form a triplet to facilitate obtaining

these explicit normals. We call this a triplet triangle. Every

triangle in the batch is sampled randomly from a set of all

possible triangle triplets of all available images.

For k-means clustering, we use k = 20 clusters when

processing training batches. However, in order to estimate

the Manhattan frame for all methods after the training ends,

we cluster the normals from the whole test set into k =
30 clusters. In addition, during both training and testing,

we merge the three selected orthogonal clusters with their

opposites. This is achieved by comparing the similarity of a

selected cluster centroid ni and the opposite vector of every

other cluster centroid (−cj). In the case |n⊺i (−cj)| > 1− t

holds true, all cluster elements of Cj are multiplied by −1
and added to Ni. Also, if any cluster centroid cj is close to

one of the selected centroids ni (|n⊺i cj | > 1 − t), elements

from Cj are added to Ni.

During the implementation of ManhattanDF [2], we ini-

tially had stability issues with the semantic segmentation

cross-entropy loss. In order to alleviate these issues, we

used label smoothing with a factor of 0.1, as well as a class

weight of 0.3 for the background class. Also, in the Hyper-

sim dataset, the scenes are much richer in content, and there

are less wall & floor labels compared to Replica. Therefore

we merged the floor class with the floor mat class, and we

also merged the window class with the wall class. We also

observed in Hypersim that in a small number of scenes the

ceiling is labeled as wall, or that there are no wall & floor

labels since they are all labeled as void.

Also, when it comes to comparing baselines and differ-

ent methods on different datasets, we always perform a thor-

ough search over additional hyperparameters before report-

ing results. On Hypersim the weight for the semantic loss

was 1 · 10−1, while the weight for surface normals loss was

5 · 10−4 in the regular case. For ScanNet, the weight for

the semantic loss was 1 · 10−1, while the weight for surface

normals loss was 5 · 10−3. When using additional sparse

depth (from SfM) supervision for ScanNet, the depth loss

weight was 1 · 10−1, while the surface normals loss weight

was changed to 1 · 10−2. For Replica, the weight for the

semantic loss was 4 · 10−2, while the weight for surface

normals loss was 5 · 10−4.

0 2 4 6 8 10

Triangle size

24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5

P
S
N
R
[d
B
]
↑

Triangle size effects on novel-view rendering
Ours

Baseline

(a) Triangle size choice effects on novel-view rendering.

0 2 4 6 8 10

Triangle size

0

1

2

3

4

5

L
1
er
ro
r
[◦
]
↓

Triangle size effects on Manhattan frame estimation
Yaw

Pitch

Roll

(b) Triangle size choice effects on MF estimation.

Figure 1: Triplet triangle size choice effects on Hypersim-A.

The performance of our method slightly decreases with the trian-

gle size increase. This is due to a bigger probability that the triplet

will not lie on a planar surface segment, and thus the estimated

normals will contain certain error.

C. Further Analysis

In this section, we perform further analyses of the exper-

iments presented in Section 5 of the main paper.

Results in 435 scenes of Hypersim: In Table 1 we present

results on all Hypersim scenes. Our proposed method per-

forms better than the baseline with respect to all observed

metrics. We were not able to evaluate ManhattanDF on all

scenes, because experiments on a large portion of the scenes

had convergence issues related to the specific loss function.

Triplet triangle size: As previously mentioned, when using

methods that rely on explicit surface normals, we randomly

sample rays for one-third of every batch size and select their

left and upper pixel neighbor to form a triplet triangle to

facilitate obtaining explicit normals. We call this a triangle

of size 0, since the immediate left and upper neighbor are

taken to form a triplet. Similarly, a triangle of size k is

when there is a k pixel gap between the selected pixel and

it’s left and upper triplet pair. In Figure 1 we show results of

our method for different triangle sizes. As the triangle size

increases, the performance of our method slightly decreases

in terms of novel-view rendering as well as MF estimation.

With larger triangle sizes, there is a bigger probability that

the triplet will not lie on a planar surface segment and thus

normals estimated with a planar assumption will contain a

certain degree of error. Nevertheless, this study shows that

whenever one is certain about the bigger planar regions, our

10−2 10−1

Cluster threshold t (log scale)

24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5

P
S
N
R
[d
B
]
↑

Cluster threshold effects on novel-view rendering
Ours

Baseline

(a) Cluster threshold choice effects on novel-view rendering.

10−2 10−1

Cluster threshold t (log scale)

0

2

4

6

8

10

L
1
er
ro
r
[◦
]
↓

Cluster threshold effects on Manhattan frame estimation
Yaw

Pitch

Roll

(b) Cluster threshold choice effects on estimating the MF.

Figure 2: Cluster threshold t choice effects on Hypersim-A. Our

method is not very sensitive to threshold values below 0.1.

method of explicit normal computation can successfully be

applied to potentially gain both efficiency and performance.

The further study in this regard however is out of the scope

of this work, which remains as our future work.

Cluster threshold: We analyze the sensitivity of our pro-

posed method to the threshold parameter t, used to merge

selected orthogonal clusters with their opposites and their

nearby clusters. In Figure 2, we see that our algorithm is

not very sensitive to different threshold t values below 0.1.

Ray sampling: As previously mentioned, when using

methods which rely on explicit surface normals, we ran-

domly sample pixel triplet triangles from a set of all possi-

ble triangles in all available images. However, when using

the InstantNGP baseline, we randomly sample rays from the

set of all available rays in all available images. The number

of selected rays is always the same in total as the specified

batch size, for all methods. In Table 2, we see that there is

no significant difference if we sample triplet triangles dur-

ing the baseline training instead of just randomly sampling

rays. Therefore the improvements in our approach come

from the proposed algorithm, and not the slightly different

way of batch sampling.

Sensitivity in hyperparameters selection: We further

analyse the sensitivity of the loss weights λort = λctr

multiplying our proposed loss terms, to the overall per-

formance. The quantitative results are presented in Fig-

ure 3. Very low λ values lead to a bad MF estimation,

whereas very high λ values lead to bad novel-view render-

ing. A good trade-off is achieved around the chosen value

Table 1: Experiments on all Hypersim scenes. We observe that our method outperforms the baseline with respect to all observed metrics.

PSNR↑ SSIM↑ Normals◦ ↓ Pitch◦ ↓ Roll◦ ↓ Yaw◦ ↓ D-MAE↓ D-RMSE↓

435

scenes

InstantNGP [5] (baseline) 19.17 0.729 61.88 7.12 7.08 21.99 0.119 0.162

Ours 20.17 0.737 54.93 3.15 3.05 8.17 0.100 0.142

10−5 10−4 10−3 10−2 10−1

Loss weight λort = λctr (log scale)

20

22

24

26

28

P
S
N
R
[d
B
]
↑

Loss weight effects on novel-view rendering
Ours

Baseline

(a) Loss weight effects on novel-view rendering.

10−5 10−4 10−3 10−2 10−1

Loss weight λort = λctr (log scale)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

L
1
er
ro
r
[◦
]
↓

Loss weight effects on novel-view rendering
Yaw

Pitch

Roll

(b) Loss weight effects on estimating the MF.

Figure 3: Loss weight λort = λctr choice effects on Hypersim-

A. Very low weights lead to bad MF estimation, whereas very high

weights lead to bad novel-view rendering.

of 2 · 10−3. In addition, visual results are presented in Fig-

ure 5, where we can observe that very low λ produces noisy

explicit surface normals, whereas very high λ makes all

details appear “blocky” in normals. Moreover, this analy-

sis has been performed statistically, on 20 scenes from the

Hypersim-A split using the same hyperparameters. We ob-

serve that the scene-specific tuning of these hyperparame-

ters could further improve the performance. These scene-

specific hyperparameters differ only slightly from the ones

selected for the whole set of scenes. We however, do not

perform scene-specific tuning, demonstrating the generaliz-

Table 2: Ray sampling strategy effects Hypersim-A. There is no

significant difference for the InstantNGP baseline between sam-

pling random triplet triangles or random rays during training.

PSNR↑ D↓-MAE Norm. ◦ ↓ Rot. ◦ ↓

Random rays

(same image)
25.72 0.072 60.11 12.36

Random rays

(random images)
25.86 0.064 57.12 10.63

Random triangles

(random images)
26.16 0.061 56.72 10.25

iblity of our method across the diverse scenes of Hypersim.

Runtime: We further analyze the run time of our proposed

method. We use Python and the PyTorch Deep Learning li-

brary. The InstantNGP baseline implementation is adapted

from [1], where some functionalities (e.g. volume render-

ing) are efficiently implemented directly in CUDA code.

In addition to the baseline, our proposed approach com-

putes explicit surface normals for every batch, followed

by k-means clustering (implemented using the FIASS li-

brary [3]), and finally followed by computing two additional

loss terms Lctr and Lort. The baseline needs 22.77 ± 2.07
minutes on average to train on Hypersim-A, whereas our

method needs 29.06 ± 1.64 minutes. The inference time is

the same for both methods, and it takes about half a minute

on average to render the test set. The experiments were per-

formed on a single NVIDIA GeForce RTX 2080 Ti GPU,

with 11 Gb of RAM memory.

D. Limitations

Missing details in surface normals: While inspecting

qualitative results of novel-view rendering, we observed a

few limitations and failure cases that occurred occasion-

ally. Sometimes our method merges one Manhattan direc-

tion with one of the other two directions, e.g. producing

the same surface normals for a roof (horizontal surface)

and one of the walls (vertical surface). This can be seen

in the first example in Figure 4. Another phenomenon is

having severe “blocky” artifacts or missing details in the

computed explicit normals, e.g. as in the second example

in Figure 4. Nevertheless, this usually offers better novel-

view RGB rendering, compared to not imposing any struc-

ture priors. This behavior is also related to the choice of

loss weights λort = λctr, discussed in Section C of this

supplementary material, as well as in Figure 5.

Easy scenes: Our method is not beneficial for very easy

scenes. This is shown in Figure 5 of the main paper. When

it comes to easy scenes, the 3D structure of these scenes

can be learned without much problem, without imposing

any structure priors.

E. More Qualitative Results

We provide more qualitative results related to experi-

ments from Section 5 of the main paper. Figure 6 depicts

visual results from the Hypersim-A dataset, Figure 7 de-

picts visual results from the ScanNet dataset, and Figure 8

depicts visual results from the Replica dataset. We again see

that our method leverages many Manhattan objects and sur-

faces in the scene, which improves the geometrical structure

of 3D compared to the InstantNGP baseline. This is visible

in surface normals and depth, obtained using volume ren-

dering. Furthermore, unlike ManhattanDF, our method re-

lies on many Manhattan cues other than the walls & floors.

For example, different component and parts of furniture and

stairs respect the Manhattan assumption, which is success-

fully exploited by our method.

Ours GT

R
G

B
N

o
rm

al
s

R
G

B
N

o
rm

al
s

Figure 4: Common failure cases. In the first example, we

see our method merging explicitly computed surface nor-

mals of one Manhattan direction (vertical ceiling surface)

with one of the other two directions (horizontal wall sur-

face). In the second example, we see severe “blocky” arti-

facts in the normals. Nevertheless, in both cases, there is

not much trouble, nor big artifacts, when performing novel-

view rendering.

Normals RGB

λ
=

0
λ
=

5
·1
0
−
5

λ
=

5
·1
0
−
4

λ
=

2
·1
0
−
3

λ
=

10
−
2

λ
=

10
−
1

G
T

Figure 5: Loss weight λort = λctr choice effects on

Hypersim-A. Very low λ values lead to very noisy ex-

plicit surface normals, whereas very high λ values lead to

”blocky” artifacts in normals and bad novel-view rendering.

InstaNGP ManDF Ours GT

R
G

B
D

ep
th

N
o

rm
al

s
R

G
B

N
o

rm
al

s
R

G
B

N
o

rm
al

s
R

G
B

N
o

rm
al

s

Figure 6: Qualitative results on Hypersim-A. Our method leverages many Manhattan objects and surfaces in the scene,

which improves the implicit geometrical representation compared to the baseline. Unlike ManhattanDF, our method relies

on many Manhattan cues other than the walls and floors.

InstaNGP ManDF Ours GT

R
G

B
D

ep
th

N
o

rm
al

s
R

G
B

N
o

rm
al

s
R

G
B

N
o

rm
al

s
R

G
B

N
o

rm
al

s

Figure 7: Qualitative results on ScanNet. Our method leverages many Manhattan objects and surfaces in the scene, which

improves the implicit geometrical representation compared to the baseline. Unlike ManhattanDF, our method relies on many

Manhattan cues other than the walls and floors.

InstaNGP ManDF Ours GT

R
G

B
D

ep
th

N
o

rm
al

s
R

G
B

N
o

rm
al

s
R

G
B

N
o

rm
al

s
R

G
B

N
o

rm
al

s

Figure 8: Qualitative results on Replica. Our method leverages many Manhattan objects and surfaces in the scene, which

improves the implicit geometrical representation compared to the baseline. Unlike ManhattanDF, our method relies on many

Manhattan cues other than the walls and floors.

References

[1] https://github.com/kwea123/ngp_pl. Last

checked : 06.09.2022.

[2] Haoyu Guo, Sida Peng, Haotong Lin, Qianqian Wang,

Guofeng Zhang, Hujun Bao, and Xiaowei Zhou. Neural 3d

scene reconstruction with the manhattan-world assumption.

In Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 5511–5520, 2022.

[3] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale

similarity search with GPUs. IEEE Transactions on Big Data,

7(3):535–547, 2019.

[4] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel

Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-

umes. ACM Transactions on Graphics, 38(4):1–14, aug 2019.

[5] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM Trans. Graph., 41(4):102:1–

102:15, July 2022.

