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1. What is Exactly TAROT Modeling?
In the paper, we presented meTA ROad paTh (TAROT)

to formulate common driving patterns in road topology.
More specifically, we argued that this formulation is capa-
ble of embedding the map constraints; hence supplying this
information to the model is similar to providing tips for nav-
igating through the road. Therefore, TAROT prediction as a
Heterogeneous Structural Learning (HSL) task can improve
learning relations of nonadjacent interacting lanes. To high-
light the effectiveness of TAROT in this way, we show an
example in Fig. 1 where two scenarios are presented: Sce-
nario 1 in which the adjacent lane runs in the opposite direc-
tion of the vehicle, and scenario 2 where the adjacent lane
has the same direction as the vehicle. As noted in the paper,
we model the scene as a directed Heterogeneous Informa-
tion Network (HIN) where only lane vertices and edges are
drawn (for two arbitrary nodes A and B, the edge from A to
B is different from the edge from B to A, and for successors
and predecessors relations, they are connected based on the
direction of the lanes). Based on this formulation, here, we
raise the question of whether is lane-changing feasible or
not in both scenarios?

We define TAROT as a composite relation in the directed
HIN, so the transition from the red point to the blue point
in the driving scene is equal to reaching node v from node
u with a path in HIN. From the figure, we can see that by
defining a TAROT pu⇝v as S-L-S-S we can distinguish be-
tween two scenarios. Particularly, in scenario 2 node v is
reachable from node u with TAROT pu⇝v while in scenario
1 it is not. Thus, by predicting the existence of TAROT, the
model can gain a sense of the constraints and rules of the
road.

2. Method to Extract Challenging Scenarios
We divide the Argoverse benchmark dataset [4] into 3

categories based on the complete trajectory of the agent ve-
hicle, namely (left/right/blind) turn, stationary and cruising,
using the directions of the lane segments that vehicles travel
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Figure 1: Two scenarios where lane changing is only feasi-
ble in one (scenario 2).

through. Since cruising scenarios are generally simpler to
predict, the focus is on the turn and stationary scenarios as
challenging. We extract these scenarios as follows:

2.1. Left/Right/Blind Turn:

In general, turn scenarios can be split into Left/Right
turns. To determine whether a turn occurs, the heading an-
gle difference between the initial point in observation and
the final point in ground truth is calculated. If the difference
falls between 20 and 110 degrees, a turn is detected. Note
that due to the occasional noisy trajectory data in the Argov-
erse Dataset, an upper limit of 110 degrees is set rather than
90 degrees to add some margin for misdetections. Next, we
further split the turns into Left/Right based on the change in
the vehicle’s current lane direction using the Argoverse API.
From general turn categories, we extract blind turns which
are deemed to be more challenging. We observed that in



Table 1: Comparison to SOTA models on challenging turn scenarios. Arrows show lower (↓) or higher (↑) values are better.
Left Right Blind (left/right)

Method minADE(↓) minFDE(↓) DAO(↑) RF(↑) minADE(↓) minFDE(↓) DAO(↑) RF(↑) minADE(↓) minFDE(↓) DAO(↑) RF(↑)
LaneGCN [12] 0.99 1.79 64.34 3.08 0.99 1.83 63.10 3.13 1.17 2.56 71.55 2.66
MMTransformer[10] 1.00 1.89 68.84 3.58 0.94 1.69 62.32 3.61 1.12 2.36 73.95 3.10
FTGN [1] 1.01 1.78 64.57 3.34 0.99 1.80 63.69 3.49 1.12 2.27 77.18 3.09
HiVT [15] 0.94 1.76 65.56 3.00 0.95 1.83 63.77 3.04 1.17 2.66 69.02 2.56
SSL-Lane [2] 0.95 1.82 66.78 3.29 0.99 1.70 56.54 3.43 1.18 2.48 72.34 3.12
MENTOR (Ours) 0.93 1.76 76.78 3.87 0.91 1.61 79.12 3.83 1.11 2.25 80.32 3.51

Table 2: Comparisons with SOTA on nuScenes
Method Venue minADE5 minADE10 MR5(2m) MR10(2m)
AutoBot [8] ICLR 2022 1.37 1.03 0.62 0.44
PGP [6] CoRL 2022 1.30 1.00 0.61 0.37
Thomas [7] ICLR 2022 1.33 1.04 0.55 0.42
FRM [14] ICLR 2023 1.18 0.88 0.48 0.30
MENTOR (Ours) 1.28 0.94 0.60 0.36

a number of turn scenarios, trajectories are straight at the
observation horizon, and turns only occur at the end of the
prediction horizon. Since the straight observation trajectory
does not provide any hints about the turning, it is likely that
the models mispredict the turning action.

2.2. Stationary:

We define stationary scenarios by measuring the rela-
tive length difference between observation and ground truth
prediction portions of the trajectories. If the length of the
ground truth trajectory is 3 times greater than the length of
the observation trajectory, this scenario will be defined as
short observation or stationary. Such scenarios tend to be
more challenging for benchmark models given the limited
historical information.

3. Per Scenario Metrics Comparison
In this section, we present per scenario evaluation of our

method against past arts on turn cases. We use the same
metrics as the paper and summarize the results in Tab. 1.
As shown in the table, the right and left turns are generally
easier for the models, and blind ones are more challenging.
The performance of past arts varies in different scenarios,
e.g. HiVT, performs better in left turn whereas MMTrans-
former and FTGN do better in right and blind turn scenarios.
Our model, MENTOR, however, consistently performs best
in all scenarios by achieving state-of-the-art performance
on all metrics. In terms of diversity and admissibility met-
rics, our model also performs more consistently across dif-
ferent scenarios whereas other models’ performance fluctu-
ates significantly.

4. Experiments on a smaller dataset
Meta-learning paradigm aims at learning to learn mod-

els efficiently and effectively, and in particular is effective
when large data is not available, as shown in few-shot learn-
ing settings [5]. Hence, the proposed MENTOR is also ef-
fective on small datasets, such as nuScenes [3], as shown in
Table 2.

5. Inference Speed and Complexity vs Accu-
racy

Model complexity and inference speed are two major
concerns in real-time applications, such as autonomous
driving. We compare the inference time of our method
with past arts and report the results in terms of minFDE
and inference time on the Argoverse test set, and the num-
ber of model parameters. As shown in Fig. 2, although
DenseTNT [9] has the smallest number of parameters (the
smallest circle), its average inference speed is the highest
(50ms per agent) due to the computationally expensive op-
timization algorithm to find dense goal sets to minimize ex-
pected error. Compared to MENTOR (Ours), in terms of
inference time and the number of parameters, the closest
model is LaneGCN [12], which slightly lags behind as it
uses a complicated four-stage fusion mechanism. In terms
of minFDE, however, the performance gap is much bigger
because LanceGCN only models the local structure of the
roads and uses multiple layers of processing, which can lead
to problems with over-smoothing for map-encoders [11, 2].

SceneTransformer [13] as a more recent state-of-the-art
model has a much better minFDE value compared to the
past arts, however, this model has 15K parameters making
it a very heavy model, and consequently difficult to train.
Comparatively, our method, MENTOR, has both low com-
plexity and inference time while achieving the best perfor-
mance in terms of minFDE. These results further highlight
the effectiveness of adopting self-supervised learning cou-
pled with meta-learning as both techniques are designed for
better representational learning while maintaining a reason-
able number of model parameters. In addition, it is worth
noting that our method’s overhead is only on the training
and not the inference.

6. Cost of training

As shown in Figure 1 of the paper, our method has two
more components compared to arbitrary baseline f : MEN-
TOR network (a two-layer MLP) and task-specific layers
Φt (a single-layer MLP per task) for transforming the em-
beddings from f to calculate task-specific loss values. In
our work, we use HGT as our baseline, which has fewer pa-
rameters than most recent SOTA models. Here, the added
learnable parameters by the mentioned components are less
than 15% of the base model’s learnable parameters. Fur-
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Figure 2: Performance comparison between Our model
(MENTOR) and past arts in terms of minFDE, inference
time, and the number of parameters (represented as the size
of circles). Results are reported on the Argoverse test set
and for all values, smaller is better.

thermore, K-fold cross-validation changes the training time
from O(n) to O(Kn). In addition, All the experiments are
conducted on NVIDIA Tesla V100.
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