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A. Radar Chart Figure 1 Details
Here, we explain the details of the radar chart in Fig-

ure 1, which summarizes the comparative performance of
EgoVLPv2 with EgoVLP [16]. First, for illustrative pur-
poses, we normalize each axis by the score achieved by
EgoVLPv2, which turns the axes in the range (0, 1]. Next,
we keep the origin of each axis at 0.7 normalized value,
which reasonably separates the inner and outer frames for
better readability. Finally, we annotate each vertex with
absolute performance metric scores. Notably, in most pre-
vious radar chats in the vision-language literature [26, 30],
the axes have different scales and shifts, which may cause
misinterpretations and fallacies. However, our illustration is
uniform and accurate to scale.

B. Algorithm
The algorithm for pre-training EgoVLPv2 is given in

Algorithm 1. Section 3.2 provides details of different pre-
training objectives.

C. Dataset Details
This section provides additional details of our pre-training

and downstream datasets.
Ego4D & EgoClip: Ego4D [10] is the first-of-its-kind
massive-scale egocentric video-language dataset and bench-
mark suite. It offers 3670 hours of daily life activity videos
captured by 931 unique camera wearers from 74 worldwide
locations and 9 different countries. The videos in Ego4D
span hundreds of scenarios (kitchen, laboratory, workshop,
porch, shopping, driving, leisure, etc.) with various day-
time and weather conditions. A portion of the dataset is
accompanied by audio, 3D meshes of the environment,
eye gaze, stereo, and synchronized videos from multiple
egocentric cameras at the same event. Each narration in
Ego4D is a free-form sentence and has a single timestamp.
For example, the narration “#C C walks towards a
laundry machine” is associated with the video content,
which occurs at 28.3s of a particular video. However, an
activity occurs for a certain duration, and such a single times-

Algorithm 1 Pre-training EgoVLPv2

Require: Batch BN : {xvid, xtext}
Learnable gating parameter: α

EgoVLPv2 Encoder: F :

{
Fdual if α = 0

Ffused if α ̸= 0

for (xvid, xtext) ∈ BN do
LEgoNCE ← EgoNCE(Fdual(xvid, xtext)) ▷ EgoNCE
xMLM
text ←Mask(xtext)
LMLM ← MLM(Ffused(xvid, x

MLM
text )) ▷ MLM

xVTM
text ← HardNeg(xtext)
LVTM ← VTM(Ffused(xvid, x

VTM
text)) ▷ VTM

Ltotal ← (1− γ − δ)LEgoNCE + γLMLM + δLVTM

end for
Back-prop into F end-to-end with Ltotal.

tamp can not reflect the start and end points where the partic-
ular activity takes place. EgoClip [16] offers a filtered ver-
sion of Ego4D and designs a contextual variable-length clip
pairing strategy to assign every narration with start and end
timestamps. Moreover, EgoClip excludes videos that belong
to the validation and test sets of the Ego4D benchmark chal-
lenges and retains textual annotation from multiple narrators,
allowing us to have narration diversity during pre-training.
Overall, EgoClip contains 2927 hours of videos which form
3.8M clip-text pairs, with an average clip length of 1.0s and
a standard deviation of 0.9s. We use this EgoClip version of
Ego4D for pre-training. We evaluate EgoVLPv2 on three dif-
ferent downstream benchmarks of Ego4D: multiple-choice
questions (EgoMCQ), natural language query (EgoNLQ),
and moment query (EgoMQ).
QFVS: The query-focused video summarization (QFVS)
[23] dataset builds upon previously existing UT egocen-
tric (UTE) [15] dataset, which contains four 3-5 hours long
videos captured in uncontrolled everyday scenarios. QFVS
curates 46 queries for every video, where each query con-
tains two distinct concepts (nouns) [29, 22, 4]. For exam-
ple, a query can be {HAT, PHONE}, or {FOOD, DRINK}.
These 46 queries cover four distinct scenarios: (i) both the
concepts appear in the same video shot (15 such queries),1

1QFVS defines every consecutive 5s video clip as a shot.



(ii) the concepts appear in the video, but not in a single
shot (15 such queries), (iii) only one concept appears in the
video (15 such queries), and (iv) none of the concepts in
the query are present in the video (1 such query). We use
prompt engineering to generate natural language using the
concepts in the query and feed the sentence in our model.
For instance, a given query {HAT, PHONE} is converted
as “All scenes containing hats and phones”. We use 10
different prompts during head-tuning. The QFVS dataset
also annotates concepts for every video shot. It proposes a
robust evaluation strategy: find the similarity between the
concepts in the generated and ground truth summary by max-
imum weight matching of a bipartite graph, and compute
precision, recall, and F1 score from the number of matched
concepts. This evaluation strategy helps to capture how well
a system summary can retain semantic information instead
of visual quantities, as used in previously existing evaluation
methods, such as a system-generated summary has to consist
of the same key units (frame or shot) as in the user sum-
mary [5, 25, 28] or comparing pixels and low-level features
[9, 13, 14, 32, 34].

EgoTaskQA: The EgoTaskQA [12] benchmark uses the
same egocentric videos as the LEMMA dataset [11], which
contains goal-oriented and multi-tasked human activities
with rich human-object interactions and action dependencies
in both single-agent and two-agent collaboration scenarios.
The videos are segmented into clips with an average dura-
tion of 25s. The questions in the EgoTaskQA dataset are
machine-generated and aim to evaluate models’ capabilities
to describe, explain, anticipate, and make counterfactual
predictions about goal-oriented events. The answers are of
two types - open-answer queries and binary statement ver-
ifications. The EgoTaskQA dataset contains 40K balanced
question-answer pairs selected from 368K programmatically
generated questions from 2K egocentric videos. Moreover,
this dataset offers two different benchmark splits (i) nor-
mal or direct split where the train, test, and validation sets
are randomly sampled in a 3:1:1 ratio and (ii) indirect split
where the actions and objects are strongly correlated and test
the model’s task understanding capability with challenging
questions. We approach the video QA as a classification task
and report accuracy for open queries and binary verification
in the direct and indirect splits.

CharadesEgo: The CharadesEgo [24] dataset consists of
68.5K annotated samples from 7860 videos from both first
and third-person views, covering 157 classes of daily in-
door activities. We only use the first-person subset, which
contains 3085 videos for training and 846 videos for testing.
ChardesEgo is originally a multi-class classification problem,
with class labels being short phrases like ‘Putting something
on the shelf.’ We treat this problem to a video-to-text (V
→ T) retrieval task as in CLIP [21] by leveraging the text
encoder to extract features from class names. We directly

evaluate the model on the validation set in the zero-shot
setting. In the fine-tuning setting, we leverage the 33.1K
training samples to perform an end-to-end fine-tuning of
EgoVLPv2. Following the previous literature [16, 36, 1], we
report video-level mAP as the evaluation metric.

EK-100: The Epic-Kitchens-100 [6] dataset contains 100
hours of egocentric cooking videos. The training set consists
of 67.2K video samples, whereas the validation and test set
has 9.6K and 13.1K samples, respectively. Each sample is
associated with text narration. We perform multi-instance
retrieval (V ↔ T) on the EK-100 dataset, which is challeng-
ing due to the significant semantic overlap between different
narrations. The evaluation metrics are mean Average Pre-
cision (mAP) and the normalized Discounted Cumulative
Gain (nDCG).

D. Implementation Details
D.1. Pre-training on EgoClip

Table D.1 presents the hyper-parameters used during pre-
training. We use TimeSformer-B [3, 2] and RoBERTa-B
[17] as our video and language backbones. We chose the
best learning rate using a grid search. We ablate our other
design choices in Section E. We use PyTorch’s native FP16
mixed precision training and gradient checkpoint during
pre-training.

After every epoch, we validate the pre-trained check-
point on EgoMCQ and select the model with the
best EgoMCQ intra-video score for other downstream
tasks. We extract 4 frames for every video sam-
ple during pre-training and reshape those to 224 ×
224. We also apply standard RandomResizedCrop,
RandomHorizontalFlip, ColorJitter and nor-
malization to every frame. We tokenize the text using
RoBERTa tokenizer and pad/truncate every narration to a
maximum length of 30. Pre-training takes five days on 32
A100 GPUs.

D.2. Downstream Settings

This section presents our fine-tuning and head-tuning
strategy for different downstream tasks. For a fair compari-
son with the baselines [16, 36, 1], we follow the same down-
stream configuration as the baselines when possible. The
downstream is performed with 16 frames per video sample.

EgoNLQ: This task is a video-text localization problem,
with each video clip longing up to 1200s. Hence, performing
end-to-end fine-tuning can be hard on EgoNLQ. Following
[16, 36], we pre-extract features from the video-text samples
using our pre-trained model and train VSLNet [31] for 100
epochs, with a learning rate of 1e−3 and batch size of 32. We
keep all other configurations the same as [16].2 However, we

2https://github.com/showlab/EgoVLP

https://github.com/showlab/EgoVLP


Hyper-parameters Notation Value

Model

Video encoder − TimeSFormer-B [3, 2]
Text encoder − roberta-base [17]
Video & text embedding − 768
Video encoder patch size − 16× 16
Video & text projector − 4096-4096-4096
# Fusion layers − 6

Pre-training

Batch size − 256
Epochs − 20
Number of frames − 4
Frame resolution − 224× 224
Vocab size − 50265
MLM prob. − 0.15
Max. length of text − 30
Temp. in Equation 4 τ 0.05
MLM & VTM loss weights γ, δ 0.25, 0.5
Optimizer − AdamW [18]
Peak LR for backbones − 3e−5
Peak LR for cross-att − 12e−5
Peak LR for loss heads − 12e−5
Warmup − Linear (first 2 epochs)
LR decay − Linear
End LR − 1e−7
Betas in AdamW (β1, β2) (0.9, 0.98)
Eps in AdamW − 1e−8
Weight decay − 1e−2

Table D.1: Pre-training hyper-parameter details of
EgoVLPv2.

observe that we can beat the baselines using even a smaller
task head and fewer epochs of tuning, which we describe
in Section F. We show the complete EgoNLQ pipeline in
Figure D.1.
EgoMQ: This is a video-only localization problem, and
similar to EgoNLQ, the input videos are very long. Hence,
end-to-end fine-tuning is also hard to perform on EgoMQ.
Following EgoVLP [16], we pre-extract video features using
pre-trained EgoVLPv2 and train VSGN [35] for 100 epochs,
with a learning rate of 1e−4 and batch size of 32. We keep
all other configurations the same as [16]. We perform a grid
search for other hyper-parameters of VSGN.
QFVS: Query-focused video summarization aims to gener-
ate an abridged version of input video guided by a natural
language query. To the best of our knowledge, we are the
first to unify QFVS as a downstream of a VLP framework.
The input videos for this task are very long (3-5 hours). We
first use the unfused N −M layers3 of our video and text
encoders to extract uni-modal features from every 5-second
clip and the text query. Next, we apply the KTS shot bound-
ary detector [20] to segment the long video.4 After this, the

3For simplicity, we keep the number of unfused and fused layers the
same in the video and text encoder.

4Segmentation helps in two ways: (i) TimeSformer can not process
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Figure D.1: Entire pipeline for EgoNLQ. Following
EgoVLP [16] and LAVILA [36], we pre-extract video-text
features using pre-trained EgoVLPv2, and train VSLNet
[31] on top of frozen encoders.

query and segment-wise clip features are fed into the top
M fused layers of EgoVLPv2 to compute the multi-modal
representation. Finally, we learn an additional single-layer
transformer to design the interrelation across all 5 second
long clips in every segment. We train the single-layer trans-
former for 20 epochs, with a batch size of 20, a peak learning
rate of 1e−5 using AdamW [18] optimizer, cosine scheduler,
and a linear warmup for the first 2 epochs. We also perform
an ablation on the single-layer transformer in Section F.

EgoTaskQA: We treat the video QA as a classification prob-
lem, where we train linear layers on top of the fused feature
representation generated by the pre-trained EgoVLPv2. In
the fine-tuning setting, we fine-tune the pre-trained model
for 36 epochs with a batch size of 64, using the AdamW [18]
optimizer. We use cosine annealing with 10% linear warmup
steps, with the peak learning rate of 2e−4 for the direct split
and 1e−4 for the indirect split. In the head-tuning setup, we
only train the classifier head on top of frozen backbones with
the same configuration.

the whole 3-5 hours long video (containing tens of thousands of frames)
at once. (ii) Segmentation is also used to convert frame-level prediction
scores into key shots. For details, please refer to [23, 7, 33].



Pre-training Objectives EgoNCE Sampling EgoMCQ (%)
Pos. Neg. Inter Intra

InfoNCE + MLM + VTM − − 90.0 55.2
EgoNCE + MLM + VTM ✓ ✗ 90.4 58.8
EgoNCE + MLM + VTM ✗ ✓ 90.5 59.1
EgoNCE + MLM + VTM ✓ ✓ 91.0 60.9

Table E.1: Ablation on EgoNCE sampling strategy.
EgoNCE [16] helps in improving the performance signifi-
cantly compared to InfoNCE [19]. We also observe that both
the positive and negative sampling of EgoNCE is important,
and removing any of those leads to a performance drop.

Cross-Att EgoMCQ (%)
Inter Intra

α = 0.1 90.1 59.8
α = 0.25 90.4 59.9
α = 0.5 90.1 58.0
α = 1 89.4 56.9

Learnable α 91.0 60.9

Table E.2: Ablation on the gated cross-attention. Learn-
able gating scaler α performs better than a fixed value.

CharadesEgo: Following [16, 36, 1], we convert Charade-
sEgo as a retrieval problem. In the zero-shot setup, we
perform dual-encoder-based inference. In the fine-tuning
setup, we use EgoNCE as our objective. We fine-tune the
model for 10 epochs with a batch size of 128 using AdamW
[18] optimizer with (β1, β2) = (0.9, 0.98), and weight de-
cay of 0.01. We use cosine annealing with warmup, with
10% linear warmup steps, peak learning rate of 1.5e−4 and
end learning rate of 1e−7. Since this is a multi-class dataset,
where each video can include multiple actions, we report
mAP as the evaluation metric. For input, we sample 16
frames from each video clip, and reshape the frames into
224× 224.

EK-100 MIR: Since a narration can jointly be associated
with multiple videos for EK-100 multi-instance retrieval
task, we use the adaptive multi-instance max-margin loss
[27] for this task with a margin value of 0.2. We keep the
zero-shot configuration the same as CharadesEgo. We fine-
tune the model for 100 epochs with a batch size of 128
using AdamW [18] optimizer with (β1, β2) = (0.9, 0.98),
and weight decay of 0.01. We use cosine annealing with
warmup, with 10% linear warmup steps, peak learning rate
of 2e−4 and end learning rate of 1e−7.

E. Additional Ablations on Pre-training
We conduct additional ablation experiments in this sec-

tion to validate our design choices. Reported results on
EgoMCQ in Table E.1, E.2, E.3 and Figure E.1 are achieved
by directly ensembling dual- and fusion-encoder-based in-
ference.

Effect of EgoNCE: We study the effect of the EgoNCE
loss [16] compared to the more popular InfoNCE objective
[19]. Given a batch of N video-text pairs, InfoNCE treats
the matched N pairs as positives and every other pair as
negatives. However, egocentric videos pose two unique
challenges: (i) Same actions in different scenarios appear
to be visually different (talking on the phone indoors and
outdoors). (ii) Different actions in same scenarios appear
to be similar (writing on a tablet and watching a movie
on a tablet are visually indistinguishable). To overcome
these challenges, EgoNCE is built upon InfoNCE with two
modifications: (i) Besides the matched video-text samples
in every batch, all narration pairs which share at least one
noun and one verb are treated as positives. (ii) Every batch
of N video-text pairs is augmented with another N visually
similar videos, often containing different actions in the same
scenarios. These added videos with the same texts as in the
original batch are treated as additional negatives.

Table E.1 shows the effect of the modified positive and
negative sampling of EgoNCE on EgoVLPv2. First, we
observe that replacing EgoNCE with InfoNCE leads to a
performance drop of 5.7% accuracy on the challenging intra-
video metric of EgoMCQ. Further, discarding either positive
or negative sampling also drops the results by 2.1-1.8% intra-
video accuracy. These results align with the findings in
[16] and indicate the efficacy of the EgoNCE objective for
egocentric video-language pre-training.

Effect of Gated Cross-attention: Next, we study the impor-
tance of gated cross-attention modules with learnable gating
scalar, α. Table E.2 shows that a fixed value of α leads to a
significant performance drop. In our best pre-trained model,
we also find that the learned value of α varies in different
layers, ranging from 0.05 to 0.4.

Effect of Projector: We compare different choices of projec-
tor dimensions used in the EgoNCE head in Figure E.1. We
observe that a three-layer projector works better than single
and two-layer projectors. For instance, a 4096-4096-4096
dimensional projector improves the EgoMCQ intra-video
retrieval performance by 0.85% over a single 4096 dimen-
sional projector. Moreover, an increase in the width of the
projector also helps in performance. Hence, we use 4096-
4096-4096 as our default projector. Notably, these results
oppose the findings in Zhao et al. [36], where the authors
observe that using 256-dimension achieves better perfor-
mance than a 512 dimensional projector. The reason behind
such results is, in contrast to Zhao et al., [36], who only
use InfoNCE, a larger projector helps us both in EgoNCE
and VTM objectives by offering a stronger hard-negative
sampling.

Effect of Batch Size: Next, we study the effect of pre-
training batch size in Table E.3a. The performance improves
using a batch size of 256 over 128. However, the perfor-



Figure E.1: Ablation on the projector dimension used in
the EgoNCE head. A 3-layer projector works better than a
single-layer projector. Moreover, an increase in the width of
the projector also helps in performance.

Batch Size EgoMCQ (%)
Inter Intra

128 90.6 59.8
256 91.0 60.9
512 91.0 60.6

1024 90.8 60.5

(a) Ablation on batch size.
EgoMCQ performance is best
with a batch size of 256.

# Frames
(Pre-training)

EgoMCQ (%)
Inter Intra

2 90.1 56.7
4 91.0 60.9
5 91.2 61.2
6 91.4 61.5

(b) Ablation on number of
frames. Increasing frames
improve EgoMCQ perfor-
mance.

Table E.3: Ablation on pre-training batch size (a) and
the number of frames (b). A batch size of 256 produces
the best results. Increasing the number of frames helps in a
performance gain. For a fair comparison with the baselines
[16, 36, 1], we keep 4 as our default frame number.

mance drops if we further increase the batch size to 512 or
1024. Therefore, we use 256 as our default batch size in all
other experiments.

Effect of Number of Frames: Lastly, we ablate the number
of frames per sample during pre-training in Table E.3b. We
see a good improvement in the EgoMCQ performance when
the number of frames is increased to 4. However, after 4,
the performance improvement diminishes. We keep 4 as
our default frame number for a fair comparison with the

Model + Task head
EgoNLQ validation set

mIOU@0.3 mIOU@0.5
R@1 R@5 R@1 R@5

SlowFast [8] + VSLNet [31] 5.45 10.74 3.12 6.63
EgoVLP [16] + VSLNet [31] 10.84 18.84 6.81 13.45
LAVILA[36] + VSLNet [31] 10.53 19.13 6.69 13.68

EgoVLPv2 + Span 11.08 21.27 7.05 14.29
EgoVLPv2 + QGH + Span 11.95 22.86 7.64 15.80
EgoVLPv2 + VSLNet [31] 12.95 23.80 7.91 16.11

Table F.1: Ablation on task-head for EgoNLQ. EgoVLPv2
beats existing models even using a smaller task-head.

Model + Task head Video-1 Video-2 Video-3 Video-4 Average

EgoVLPv2 + Linear layers 50.17 50.95 59.38 34.58 48.77
EgoVLPv2 + 1-layer transformer 54.97 55.74 64.10 40.83 53.91
EgoVLPv2 + 2-layer transformer 52.78 51.98 66.80 34.10 51.42
EgoVLPv2 + 3-layer transformer 51.87 52.45 63.75 35.55 50.91

Table F.2: Ablation on task-head for QFVS. A single-layer
transformer produces better performance than linear layers
and multi-layer transformers.

baselines [16, 36, 1], who also use 4 frames per sample
during pre-training.

F. Ablations on Downstream

This section presents an ablation on downstream task-
specific heads for EgoNLQ and QFVS.

EgoNLQ: Following EgoVLP [16] and LAVILA [36], we
use VSLNet [31] as the task-head for EgoNLQ. However,
since our model learns cross-modal features during pre-
training, we observe that we can beat the previous methods
by a significant margin even using smaller task heads. As
shown in Table F.1, when we only use the conditional span
predictor module, which is just a linear layer, we can beat
EgoVLP by 2.43% R@5 for IoU=0.3. Adding the QGH
module further helps in improving the performance. Using
the whole VSLNet can significantly beat EgoVLP and LAV-
ILA across all metrics. Moreover, the previous methods train
VSLNet for 200 epochs, whereas we achieve the best perfor-
mance within 100 epochs. These results prove the efficacy
of the cross-modal pre-trained representation of EgoVLPv2.

QFVS: Next, we compare different heads for QFVS in Table
F.2. Notably, this dataset is very small, with only 135 train-
ing samples. We observe that a single-layer transformer head
performs better than linear layers and multi-layer transform-
ers. Linear layers can not model temporal relations across
different video shots, which a transformer can efficiently
do. However, multi-layer transformers overfit this dataset
due to the small training set. Hence, we use a single-layer
transformer for QFVS.



#C C tightens the bolt on the bicycle handle on the table with the T-wrench in his right hand.

#C C holds the test tube with left hand and heats the wire on the Bunsen burner with right hand.

Frame 1 Frame 2 Frame 3 Frame 4

Figure G.1: Limitations of our method: tiny and hindered objects in cluttered environments are not distinctly attended by
the pre-trained EgoVLPv2. We show the attention maps of the [CLS] token from the text encoder on input video frames in
the text-to-video cross-attention module of the last layer of EgoVLPv2. Different heads, shown in different colors, focus on
various semantic regions of the video frames. The visualizations are obtained with 960p video frames, resulting in sequences
of 3601 tokens for 16× 16 patches.

G. Error Analysis
Although EgoVLPv2 learns impressive cross-modal rep-

resentation during pre-training, there are still some cases
where the model fails to identify tiny and hindered objects,
especially in cluttered environments. We show two such ex-
amples in Figure G.1. In the first video, the objects ‘bicycle
handle’ and ‘T-wrench’ are barely visible even in human
eyes, and thus, EgoVLPv2 can not consistently attend to
these objects in all frames. However, it can recognize larger,
more familiar things like tables and human hands. In the
second video, we show an egocentric activity in a wet lab,
where the camera wearer is wearing gloves, holding a test
tube, and heating a wire using a bunsen burner. This is a
complex scenario with multi-agent collaborative activities
and fine-grained actions. Interestingly, EgoVLPv2 can cor-
rectly identify the human hands and track the motion of the
thumb in different frames, even when wearing gloves. How-
ever, the test tube and the wire are hindered and are partially
attended by the model. Since we pre-train EgoVLPv2 with
224× 224 video frames, such tiny objects are often hard to
be distinguished. However, higher-resolution frames will be
more helpful in addressing such intricate scenarios, which
we plan to explore in future works.

H. Qualitative Downstream Performance

EgoMCQ: In Figure H.1, we show example predictions
made by EgoVLP [16] and EgoVLPv2 on multiple choice
questions from EgoMCQ validation set. EgoVLPv2 beats
EgoVLP substantially on the challenging intra-video setting,
where all 5 choices are visually similar. The VTM head
pre-trained with hard-negative sampling helps EgoVLPv2

to distinguish between similar videos and boosts the perfor-
mance over EgoVLP.

QFVS: Figure H.2 shows some examples of query-focused
summaries generated by EgoVLPv2 on the QFVS dataset.
Given a long egocentric video and a natural language query,
our model can summarize all relevant scenes successfully.
Notably, the input videos on this dataset are very long (3-5
hours), and the length of the generated summary is 2% input
video, which makes this task challenging.

EgoNLQ: Figure H.3 shows examples of predictions made
by EgoVLP [16] and EgoVLPv2 on text-guided video lo-
calization from the EgoNLQ dataset. Given an untrimmed
video and a natural language query, this task aims to predict
a single temporal window to answer the query. The predic-
tions of EgoVLPv2 are significantly more aligned with the
ground truth than EgoVLP, which supports the impressive
quantitative performance gain by EgoVLPv2 over EgoVLP
across all metrics.
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