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A. Extended Details on DPF Method
A.1. Normal Estimation and Transfer

Complementing main paper Section 3.1, here we elab-
orate on how to obtain point normals in the warped point
clouds.

We consider three strategies to obtain a new point nor-
mal direction n

(t)
i . First, in most considered scenarios, the

points in canonical space represent vertices of a dense mesh,
which are either given as ground truth or obtained by run-
ning a surface reconstruction algorithm [8]. Hence, after
applying the transformation gθ, we can keep the canonical
space connectivity and directly obtain the new normal direc-
tions. If no such information is available, or the induced de-
formations lead to some drastic changes in mesh topology,
we can also re-estimate normals using standard approaches
[6]. Please note that all the steps above are fully differen-
tiable, thanks to the modern deep learning 3D frameworks
[7] and differentiable Poisson solvers [21].

Another way to obtain new normal directions is to di-
rectly warp them with the deformation network. We leave
for future work an exploration of the correct architecture
and parametrisation for such learning-based normal estima-
tion, and provide only a proof-of-concept example of such
approach in Figure A.1.

In general, thanks to the introduced isometric loss and
a bias of the network towards smooth predictions, the pre-
dicted deformations in our experiments allow us to directly
reuse the canonical space mesh topology; this strategy is
implied, if not stated otherwise.

A.2. Optimisation Details

In most cases, we optimise the deformation field for
2000 steps, sampling 104 random points for computing
LCD and Liso. We use Adam optimiser [9] with an ini-
tial learning rate of 10−4, decreasing the rate by 10−1 after
each 200 steps of no improvement.

If a well-defined ground truth canonical surface is given
(Sections 4.2-4.3 of the experiments), we omit the optimi-
sation of point locations in the canonical space and optimise

Figure A.1. Joint optimisation of the canonical space cloud and
deformation network. In this illustrative example, we showcase the
simultaneous optimisation of the canonical cloud XC and the de-
formation network gθ . Apart from new point locations, the defor-
mation network also predicts updated normal directions for each
point. Please see the supplemental video for the animation of the
sequence (title slide).

only the deformation field parameters w.r.t. LCD,Liso,LV .
However, the possibility to optimise canonical space

together with the deformation framework and to utilise
rendering-based losses (e.g. LnI

) is essential for future
work, when the introduced deformation paradigm will be
combined with efficient photorealistic point-based render-
ers [29, 31]. We showcase feasibility of such optimisation
in Figures A.1 and Figure 7 of the main manuscript.

B. Extended Experiments, Results, Discussions
B.1. Hyperparameter Selection, Implementation

For all the baselines considered in the paper, we aim to
find the optimal parameters for optimisation and render-
ing. E.g., we experiment with the number of elements in
the deformation pyramid [12] to achieve best results, find
the best hyperparameters for the marching cube algorithm
when comparing to SDF-based methods, etc.

We use original implementations of the NGLOD [25],
NPMs [19], NDP [12] and Siren [24] frameworks [1–4].
We use the torch-NGP framework [26] for the instant NGP
[17] baseline since it allows easy modification, and [3] for
the Nerfies [20] and neural scene flow prior [10] baselines.



For the avatar animation baselines [13, 15, 22], we use the
results kindly provided by the authors.

B.2. Point-based Surface Reconstruction

Other techniques. The proposed point optimization
scheme can also be considered a hybrid of the differentiable
surface splatting technique [30] and shapes-as-points ap-
proach [21]. Compared to DSS, we additionally utilize the
Chamfer distance loss and a more efficient point renderer
[28], which results in better reconstruction. Compared to
SAP, our method has lower training time memory require-
ments since no differentiable Poisson solver needs to be ran
on the grid for each pass. However, this technique can be
complementary to our basic pipeline in case of the recon-
struction from unoriented, noisy point clouds, as well as
when a water-tight mesh reconstruction is required. The
actual goal of this experiment is not to claim the ultimate
advantage of any particular point optimization scheme, but
rather show their appealing features compared to implicit
methods.

B.3. Experiment: Learning Deformations

Additional results. Augmenting the discussion in Sec-
tion 4.2 of the main manuscript, we provide additional
comparisons with the best-performing non-rigid registration
method [12] on the DeformingThings4D dataset in Figure
B.3, as well as the failure case of our method (c).

SMPL-X guidance vs keypoint matching. To qualita-
tively justify the advantages of the SMPL-X based defor-
mation learning guidance (Section 4.2), we visualise and
discuss the results of the 3D keypoint matching algorithm
[11] in Figure 4.

As-isometric-as-possible (AIAP) regularisation for
SDF-based learning. We enforce the AIAP constraint on
the points sampled from the surface. It is possible to apply
the same kind of regularisation in the SDF case by simply
enforcing it on randomly sampled points in space. How-

Figure B.1. Learning a rigid horizontal motion of two 3D objects
with λiso → ∞. Learning a deformation field for the scene while
enforcing the AIAP loss only on surface points will result in re-
covering rigid motion of objects (a). In the case of enforcing same
regularisation on random points in space (b), model will converge
to predicting zero deformation everywhere. λiso = 107 in both
cases.

Figure B.2. Learning on noisy and incomplete scans. Here we
show the effect of learning a deformation field in the case of a
target scan with noisy points (103) and holes (head, paw). While
learning fails in the case of basic optimisation without AIAP loss
(third column), utilising isometric loss leads to a plausible defor-
mation (rigthmost row).

ever, the effect of this will be different. To illustrate this,
we consider λiso → ∞ (Eq. 19). Figure B.1 shows the re-
sults of this experiment on a simple scene consisting of two
repelling 3D objects.

Experiments on noisy scans. While we generally con-
sider learning on noisy or partial scans an avenue of future
work, an example of learning a deformation for this case is
showcased in Figure B.2.

B.4. Experiment: Avatar Animation

Here we provide extended details on the experiments in
the main manuscript Section 4.3.

We conduct an experiment on the ReSynth [15]
dataset. Each data frame t contains a dense point cloud
{x(t)

i }i=1,··· ,N (N ≈ 2 × 105 points) of a posed, clothed
person , and its corresponding underlying minimally-
clothed body mesh vertices {v(t)}i=1,··· ,Nv

. The minimal
body meshes have a consistent topology across all frames,
but the clothed body point clouds do not have temporal cor-
respondence. Given a set of such data pairs, we aim to pro-
duce clothed body for unseen test poses.

Implementation details. We adopt the guided deforma-
tion field learning described in the main manuscript Sec-
tion 3.2. On a high level, we optimise a per-frame MLP
to model the deformation field between minimal bodies of
the canonical- and the target frame, and apply the optimised
MLP to deform clothed body surface points.

Specifically, to predict a test frame t, we choose a canon-
ical data frame C from the training set, and optimise a de-
formation field parameterized by an MLP g

(t)
θ , such that

the minimally-clothed body mesh vertices in the canoni-
cal frame {v(C)

i }1,··· ,Nv matches that of the target frame
{v(t)

i }1,··· ,Nv after transformed by g
(t)
θ :

θ∗ = argmin
θ

Nv∑
i=1

λV ||v(t)
i − (v

(C)
i + gθ(v

(C)
i )||1

+ λisoLiso.

(1)

The optimisation is performed using the Adam optimiser
with a learning rate of 1×10−4 and hyperparameters λiso =



Figure B.3. Additional results on non-rigid surface registration. (a-b): comparison to the NDP [12] method in the case of Lepard [11]
keypoint supervision. (c): failure case of our method in the situation of the highly articulated pose with missing keypoints. Matched points
are visualised in red, pay attention to missing limbs.

Figure B.4. Detected Lepard [11] keypoints on the Resynth scan
pair. The off-the-shelf landmark detection method fails in the case
of highly articulated humans and loose clothing, motivating the
need for better deformation supervision.

103, λV = 104 for 2000 steps.

Once optimised, g(t)θ is used to transform arbitrary points
on the canonical clothed body surface into the target pose.
In practice, instead of deforming all points in the high-
resolution source point cloud, we first perform Poisson Sur-
face Reconstruction (PSR) [8] to obtain a mesh and deform

the mesh vertices. In this way, we can transfer the mesh
connectivities derived from PSR to the deformed point set
and directly obtain the points’ normals without the need
to predict or re-estimate them, as discussed in Section A.
Although the deformation field g

(t)
θ is optimised for the

minimally-clothed body, the smooth inductive bias of the
coordinate-based MLP results in a coherent clothing shape
after deformation.

Choice of canonical frame. We investigate two strate-
gies of choosing the canonical frame. (1) “Single canonical
frame”: we simply choose the first frame (in an “A”-pose)
from the ReSynth training set and use that as the source
of deformation for all test poses. Empirically we find that
the results from this approach are temporally coherent, as
shown on the slide 16 of the supplemental video. It is also
worth noting that this setting is essentially a solution to the
“single scan animation” challenge [15], i.e. animating a
given single scan to different novel poses. (2) “Nearest
canonical frame”: for each test pose, we find its nearest
pose (measured by the vertex-to-vertex distance of the un-
derlying body mesh) in the training set, and use that frame
as its canonical frame. This approach does not guarantee
temporal consistency due to the discontinuity nature of the



nearest neighbor search, but the produced clothing geome-
try varies more obviously with the body pose. We visualise
several nearest canonical frames for various target poses in
the Figure B.6.

Fairness of the comparison to baselines . Please note
that the comparison with the baselines (SCANimate, POP,
SkiRT) here is fair as we address exactly the same task us-
ing the same amount of information: all methods have ac-
cess to a collection of scans and fitted SMPL bodies. The
difference is in how we use them: the baseline methods use
them as training data for a single feedforward model; our
method uses them as a “pool” of source scans from which
we retrieve a canonical scan at inference.

Discussions on the evaluation metric. In the main pa-
per we compared with baseline methods using a perceptual
study instead of the Chamfer distance and normal consis-
tency metrics as used in recent papers [13, 15, 22]. Here we
discuss the reason.

Previous works [13, 15, 22] evaluate clothing shape pre-
diction accuracy by computing Chamfer and surface normal
distances to the ground truth. This implicitly assumes a one-
to-one mapping from body pose to the clothing shape but in
reality, the clothing shape is not solely dependent on pose; it
is also influenced by other factors such as the motion speed
and history. Consequently, for a given pose, multiple cloth-
ing shapes can be plausible, as discussed in [5, 14]. An
illustration is shown in Figure B.5.

Since the experiment in Section 4.3 is primarily pur-
posed to demonstrate the representational power of our
method and its applicability to human modeling, we re-
sort to a perceptual study to characterize its quality, instead
of adopting the pose-only regression metrics as discussed
above.

Nevertheless, here we also provide the Chamfer distance
and normal consistency errors for a reference in Table B.1.
As our method deforms a source (canonical) cloud, the tar-
get state it produces, while plausibly looking, may not con-
form to that of the ground truth, hence the higher errors in
the table. While pose-shape regression is not the focus of
this work, we believe that combining it with our represen-
tation can lead to comparable to lower errors under these
metrics while achieving higher visual quality as we show in
the paper. We leave this for future work.

Method anna-001 beatrice-025 christine-027 janett-025 felice-004
CD NML CD NML CD NML CD NML CD NML

SCANimate [22] 1.34 1.35 0.74 1.33 3.21 1.66 2.81 1.59 20.79 2.94
PoP [15] 0.62 0.82 0.34 0.75 1.72 0.97 1.24 0.89 7.34 1.24

SkiRT [13] 0.58 0.81 0.31 0.77 1.54 0.99 1.10 0.82 6.45 1.25
Ours (single) 1.27 0.99 0.68 0.95 4.40 1.39 3.12 1.36 14.45 2.56

Ours (nearest) 0.96 0.96 0.46 0.99 2.88 1.24 2.51 1.19 16.07 2.50

Table B.1. Errors on pose-only regression metrics. Chamfer dis-
tance in ×10−4m2; normal consistency in ×10−1. “Ours (sin-
gle)”: using a single frame as canonical frame; “Ours (nearest)”:
using nearest training scan per frame as the canonical frame (see
Section B.4, “Choice of canonical frame”).

Figure B.5. Stochastic clothing shape. Given very similar body
poses, the clothing shape state can largely differ, while both being
valid. Example taken from the ReSynth [15] dataset, from the
beginning and the end of the “hips” motion sequence, respectively.
The body dynamics (motion history) has influenced the clothing
shape despite the similarity in pose. The chamfer distance and
normal consistency error between these two frames are 30.0 ×
10−4m2 and 3.5× 10−1, respectively.

Figure B.6. Nearest canonical frames. Here, we visualise the near-
est scans from the training set (left) used as a starting point for
deformation modeling (middle), in the case of the ”nearest scan”
avatar animation regime. Please see the Section B.3 for more de-
tails.

Details on perceptual study. We choose the optimal
renderering parameters for each method. For point-based



baselines [13, 15], we use PyTorch3D point renderer with a
point radius of 0.007 to minimize the visual artifact caused
by the gaps between points. For SCANimate, we first ex-
tract a mesh from the generated implicit surface and ren-
der with the PyTorch3D mesh renderer. For our method we
use the results generated by the Nearest canonical frame
scheme, perform PSR (see paragraph “Implementation de-
tails”) and render the deformed mesh. The camera and
lighting condition are kept same for all renderings.

The participants are presented with a set of 32 examples
consisting of different subjects and poses, randomly sam-
pled from the ReSynth dataset results. In each example, the
ground truth rendering is shown on the left, and the results
generated by different methods are presented in random or-
der on the right, see Figure B.7. For each example, the par-
ticipants are asked to select their most preferred, single re-
sult based on the following two criteria: (1) overall visual
quality considering the realism of clothing shape, wrinkle
details and level of artifacts; (2) resemblance to the ground
truth. The statistics in the main paper Table 3 are computed
by dividing the number of votes each method receives with
the total number of votes (excluding 0.3% empty votes).

Result: extreme poses. Figure B.8 shows further qual-
itative results on predicting the clothing shape under ex-
treme, out-of-distribution poses, in comparison to a recent
point-based clothed human model, SkiRT [13]. Although
SkiRT is designed to address the “split”-like artifacts for
skirts and dresses by learning an LBS field for the gar-
ment, it inevitably reaches its limit under these poses: the
points between the legs become very sparse. In contrast,
our method well retains the completedness and smoothness
of the cloth, showing a higher robustness for these garment
types under extreme poses.

C. Limitations and Future Work
Our deformation optimisation pipeline still struggles to

find a plausible deformation when large deformations are
present and no guidance is available (Figure B.3c). This
is especially pronounced in the case when the scene under-
goes significant topological changes. One way to improve
the deformation learning in the case of animals is to use es-
timators of the corresponding body joints [16, 18] and 3D
models [32, 33].

Second, as discussed in the main paper, currently our
method requires optimising a small network for each frame
when dealing with unseen target scans or poses, which takes
approximately 30s/frame with a NVIDIA RTX6000 GPU
for the ReSynth data. This makes our method, in its cur-
rent form, unsuitable for real-time applications. Potential
solutions here include meta-learning approaches to learning
deformations networks [23, 27].

Finally, when applied to modeling humans, the guided
deformation optimisation does not explicitly learn the de-

pendence of the clothing geometry on factors such as body
pose and acceleration, which is an open research topic per
se. Nevertheless, our experiments have demonstrated the
capability of our approach in modeling highly non-rigid,
articulated shape such as dynamic humans. Future work
can combine our representation with domain-specific tech-
niques to create high-quality real-time avatar models with
explicit control on semantic and physical parameters.



Figure B.7. Example of perceptual study image. The ground truth rendering is always presented on the leftmost position, and the ordering
of results from different methods is shuffled per example.

SkiRT Ours

Figure B.8. Qualitative comparison against the SoTA point-based
clothed human model [13] under extreme poses.
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Olga Sorkine-Hornung. Differentiable surface splatting for
point-based geometry processing. ACM Transactions on
Graphics (proceedings of ACM SIGGRAPH ASIA), 38(6),
2019. 2

[31] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz,
and Felix Heide. Differentiable point-based radiance fields
for efficient view synthesis. In SIGGRAPH Asia 2022 Con-
ference Papers, pages 1–12, 2022. 1

[32] Silvia Zuffi, Angjoo Kanazawa, Tanya Berger-Wolf, and
Michael J. Black. Three-D safari: Learning to estimate ze-
bra pose, shape, and texture from images ”in the wild”. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), October 2019. 5
[33] Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and

Michael J Black. 3D menagerie: Modeling the 3D shape and
pose of animals. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6365–6373,
2017. 5


