
Supplementary material:
Inverse problem regularization with hierarchical variational

autoencoders

Code
The code for this project can be found on https://github.com/jprost76/PnP-HVAE

Summary
This supplementary material contains:

• proofs of the theoretical results of the main paper in section 8

• additional implementation details in section 9

• a discussion on the contractivity of the autoencoder and its fixed points in section 10

• additional comparisons with the competing methods in section 11

8. Proofs of the main results
In this section we provide proofs relative to Algorithm 1, Proposition 2, Proposition 3 and

the characterization of the fixed point given by Algorithm 2.

8.1. Global minimum of the hierarchical Gaussian negative log-likelihood

In this section we show that under certain conditions Algorithm 1 actually computes the
global minimum of J2(x, z) with respct to z. To reach that conclusion we first decompose the
objective function into several terms (equation (22) in proposition 4). Since many of these terms
do not depend on z we conclude that

arg min
z
J2(x, z) = arg min

z
A(z) +B(z).

Furthermore, since the second term (B(z)) only depends on z via the determinant of the
encoder and decoder covariances, we have that under assumption 1

arg min
z
J2(x, z) = arg min

z
A(z).
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Finally, proposition 5 shows that a functional of the form A(z) reaches its global minimum
exactly at the point Eτ (x) computed by Algorithm 1. Hence under assumption 1 we have that

arg min
z
J2(x, z) = arg min

z
A(z) = Eτ (x).

Proposition 4 The objective J2(x, z) in equation (17) can be decomposed as

J2(x, z) = f(x)− log pdata(x) + A(z) +B(z) + C (22)

where

A(z) :=
L−1∑
l=0

Al(zl, z<l) (23)

B(z) :=
L−1∑
l=0

Bl(z<l) (24)

C :=
L−1∑
l=0

Cl (25)

and

Al(zl, z<l) := ‖zl −ml(z<l)‖2S−1
l (z<l)

(26)

Bl(z<l) :=
1

2
log det(S−1l (z<l)) +

1

2
(1− λl) log det(S−1p,l (z<l)) (27)

Cl :=
dl
2

(log λl − λl log(2π)) (28)

and

mp,l(z<l) := µθ,l(z<l) Sp,l(z<l) := Σ−1θ,l (z<l) (29)

mq,l(z<l) := µφ,l(z<l) Sq,l(z<l) := Σ−1φ,l (z<l) (30)

ml(z<l) := Sq,l(z<l)mq,l(z<l) + λlSp,l(z<l)mp,l(z<l) Sl(z<l) := Sq,l(z<l) + λlSp,l(z<l)
(31)

Proof. First observe that qφ(zl|x, z<l) and pθ(zl|z<l) are multivariate Gaussians as stated in
equation (8). Also pθ(zl|z<l)λl behaves like a Gaussian with a different normalization constant,
namely

pθ(zl|z<l)λl = N (zl;mp,l, λ
−1
l S−1p,l )Dl

where the missing normalization constant is

Dl = (2π)−
dl
2
(1−λl)λ

− dl
2

l det(S−1p,l )
− 1

2
(1−λl)



Now qφ(zl|x, z<l)pθ(zl|z<l)λl is the product of two Gaussians times the correcting term Dl.
Since the product of two Gaussians is a Gaussian we obtain

qφ(zl|x, z<l)pθ(zl|z<l)λl = N (zl;ml, S
−1
l )Dl

with mean and variance given by equation (31). Taking− log in the previous expression, we get
Al+Bl+Cl by grouping intoAl the terms depending on both zl and z<l, inBl those depending
only on z<l, and into Cl the constant terms. �

Assumption 1 (Volume-preserving covariances) The covariance matrices of the HVAE have
constant determinant (not depending on z<l, although this constant may depend on the hierar-
chy level l)

det(Σφ,l(z<l,x)) = cl(x) (32)
det(Σθ,l(z<l)) = dl (33)

Proposition 5 (Algorithm 1 computes the global minimum of J2(x, z) with respect to z) Under
Assumption 1 minimizing J2(x, z) w.r.t. z is equivalent to minimizing A(z) defined in equa-
tions (23) and (26), i.e.

arg min
z
J2(x, z) = arg min

z
A(z).

In addition the global minimum of A(z0, . . . ,zL−1) is given by the recursion computed by Al-
gorithm 1, namely: {

z?0 = m0

z?l = ml(z
?
<l) for l ∈ {1, . . . , L− 1} (34)

where z?<l = (z?0 , . . . ,z
?
l−1), and ml(z<l) as defined in equations (29) to (31). Put another way,

z? = Eτ (x) as computed by Algorithm 1.

Proof. According to the decomposition of J2 into several terms (equation (22) in propo-
sition 4), we observe that many of these terms do not depend on z. Therefore we conclude
that

arg min
z
J2(x, z) = arg min

z
A(z) +B(z).

Furthermore, since the second term (B(z)) only depends on z via the determinant of the en-
coder and decoder covariances, and these determinants do not depend on z under assumption 1,
we conclude the first part of the proposition, namely

arg min
z
J2(x, z) = arg min

z
A(z).

Now let’s find the global minimum of A(z).



Figure 8: Evolution of Bl+1 = log detS−1l+1(z<l+1) as a function of the distance Al = ‖zl −
µl(z<l)||2S−1

l (z<l)
. (experiment made on VDVAE).

It is clear that A(z0, . . . ,zL−1) ≥ 0 for all z0, . . . ,zL−1. It is also simple to verify that:

A(z?1 , . . . ,z
?
L−1)

=||m0 −m0||2S−1
1

+
L−1∑
l=1

||ml(z
?
<j)−ml(z

?
<j)||2S−1

l (z?<l)

=0. (35)

Therefore the minimum value of A is reached in z?. Furthermore, for any z 6= z?, let us denote
by k the first value in {0, . . . , L− 1} such that zk 6= mk(z

?
<k). Then,

A(z0, . . . ,zL−1) ≥ ||zk −mk(z
?
<k)||2S−1

k (z?<k)
> 0, (36)

which implies that z? is the unique minimum of A. �

Discussion on assumption 1 (volume preserving covariance) We showed in proposition 5
that, under assumption 1, Algorithm 1 computes the global minimum of J2(x, z) with respect to
z. When optimizing zl in (22) we only consider the impact of zl on the distance to the Gaussian
mean in A(z), while ignoring its impact on the covariance volumes in the subsequent levels in
the terms Bl′(z<l′), for l′ > l. If the covariance volumes are constant as stated in assumption
1, the value of zl has no impact on the covariance volumes of the subsequent levels, and algo-
rithm 1 gives the global minimizer of J2(x, .) with respect to z. In practice, the HVAE we use
does not enforce the covariance matrices of p(zl|z<l) and q(zl|z<l,x) to have constant volume.
However, the experiment in figure 8 shows that the variation of Bl+1(z<l+1) is negligible in
front of Al(zl). Hence, we can reasonably expect algorithm 1 to yield the minimum of J2(x, z)
with respect to z. For future works, we could explicitly enforce assumption 1 in the HVAE
design.

8.2. Proof of Proposition 2(Lipschitz constant of one iteration)

Proof. For a decoder with constant covariance Σ−1θ (z) = 1
γ2

Id, we have:

T(x) =

(
AtA+

σ2

γ2
Id

)−1(
Aty +

σ2

γ2
µθ (Eτ (x))

)
(37)



and then :

||T (u)− T (v)|| ≤
∣∣∣∣∣
∣∣∣∣∣
(
AtA+

σ2

γ2
Id

)−1∣∣∣∣∣
∣∣∣∣∣ σ2Lτ
γ2
||u− v||. (38)

To conclude the proof, we use that for an invertible matrix M, ||M−1|| = 1
σmin(M)

, where
σmin(M) is the smallest eigenvalue of M . We also use the fact that α is an eigenvalue of
AtA + σ2

γ2
Id if and only if α = λ + σ2

γ2
for an eigenvalue λ ≥ 0 of the positive definite matrix

AtA. �

8.3. Proof of Proposition 3 (fixed point of PnP-HVAE)

Proof. x∗ is a fixed point of T if and only if x∗ = T (x∗). Recalling the definition of T(x) :=
proxγ2 f (HVAE (x, τ )), and the definition of proximal operator proxγ2f (x) = arg mint γ

2f(u)+
1
2
||x− t||2, the fixed point condition is equivalent to

x∗ = arg min
t

1

2
‖t− HVAE (x∗, τ ) ‖2 + γ2f(t).

Since f is convex the above condition is equivalent to

x∗ − HVAE (x∗, τ ) + γ2∇f(x∗) = 0.

Rearranging the terms we obtain equation (21). �
Under mild assumptions the above result can be restated as follows: x∗ is a fixed point of T

if and only if
∇f(x∗) +∇g(x∗) = 0,

i.e. whenever x∗ is a critical point of the objective function f(x) + g(x) = − log p(y|x) −
log pθ,τ (x), where the tempered prior is defined as the marginal

pθ,τ (x) =

∫
pθ,τ (x, z)dz

of the joint tempered prior defined in equation (10).
This is shown in the next section.

8.4. Fixed points are critical points

In this section we characterize fixed points of Algorithm 2 as critical points of a posterior
density (a necessary condition to be a MAP estimator), under mild conditions. Before we
formulate this caracterization we need to review in more detail a few facts about HVAE training,
temperature scaling and our optimization model.



HVAE training. In section 3.1 we introduced how VAEs in general (and HVAEs in particular)
are trained. As a consequence an HVAE embeds a joint prior

pθ(x, z) := pθ(x|z)pθ(z) (39)

from which we can define a marginal prior on x

pθ(x) :=

∫
pθ(x, z)dz. (40)

In addition, from the ELBO maximization condition in (5) and Bayes theorem we can obtain
an alternative expression for the joint prior, namely

pθ(x, z) = qφ(z|x)pdata(x). (41)

Temperature scaling. After training we reduce the temperature by a factor τ , which amounts
to replacing pθ(z) by

pθ,τ (z) :=
L−1∏
l=0

pθ(zl|z<l)
1

τ2
l

τ
dl
2
l

as shown in equation (10), leading to the joint tempered prior

pθ,τ (x, z) := pθ(x|z)pθ,τ (z). (42)

The corresponding marginal tempered prior on x becomes

pθ,τ (x) :=

∫
pθ,τ (x, z)dz (43)

and the corresponding posterior is

pθ,τ (z|x) := pθ,τ (x, z)/pθ,τ (x). (44)

The joint tempered prior also has an alternative expression (based on the encoder). Indeed
substituting pθ(x|z) from equations (39) and (41) into (42) we obtain

pθ,τ (x, z) =
pθ,τ (z)

pθ(z)
qφ(z|x)pdata(x). (45)

Substituting this result into definition (44) we obtain an alternative expression for the tempered
posterior

pθ,τ (z|x) = qφ(z|x)pdata(x)/pθ(z). (46)



Optimization model. Since we are using a scaled prior pθ,τ (x) encoded in our HVAE to
regularize the inverse problem, the ideal optimization objective we would like to minimize is

U(x) := − log p(y|x)︸ ︷︷ ︸
f(x)

− log pθ,τ (x)︸ ︷︷ ︸
g(x)

. (47)

Since pθ,τ (x) is intractable our algorithm seeks to minimize a relaxed objective (see equa-
tion (15)). Nevertheless, under certain conditions (to be specified below) this is equivalent to
minimizing the ideal objective (47).

Fixed-point characterization. We start by characterizing∇ log pθ,τ (x) in terms of an HVAE-
related denoiser (Proposition 6). Then we relate this denoiser to the quantity HVAE(x, τ) that
is computed by our algorithm (Proposition 7). As a consequence we obtain that the fixed point
condition in Proposition 3 can be written as∇U(x) = 0 (see Corollary 2).

Proposition 6 (Tweedie’s formula for HVAEs.) For an HVAE with Gaussian decoder pθ(x|z) =
N (x;µθ (z) , γ2I), the following denoiser based on the HVAE with tempered prior

Dθ,τ (x) :=

∫
µθ (z) pθ,τ (z|x)dz (48)

satisfies Tweeedie’s formula

Dθ,τ (x)− x = γ2∇ log pθ,τ (x) = −γ2∇g(x). (49)

Proof. From the definition of pθ,τ (x) in equation (43) we have that

∇ log pθ,τ (x) =
1

pθ,τ (x)

∫
∇xpθ(x|z)pθ,τ (z)dz.

From the pdf of the Gaussian decoder pθ(x|z) its gradient writes

∇xpθ(x|z) = − 1

γ2
(x− µθ (z))pθ(x|z).

Replacing this in the previous equation we get

∇ log pθ,τ (x) =
1

γ2

∫
(µθ (z)− x)

pθ(x|z)pθ,τ (z)

pθ,τ (x)
dz

=
1

γ2

∫
(µθ (z)− x)pθ,τ (z|x)dz

=
1

γ2

(∫
µθ (z) pθ,τ (z|x)dz − x

)
.



In the second step we used the definitions of the joint tempered prior pθ,τ (x, z) (42) and the
tempered posterior pθ,τ (z|x) (44). The last step follows from the fact that

∫
pθ,τ (z|x)dz = 1

according to definitions (44) and (43). Finally applying the definition of the denoiser Dθ,τ (x)
in the last expression we obtain Tweedie’s formula (49). �

Under suitable assumptions the denoiser defined above coincides with HVAE(x, τ ) com-
puted by our algorithm.

Assumption 2 (Deterministic encoder) The covariance matrices of the encoder defined in
equation (8) are 0, i.e. Σφ,l(z<l,x) = 0 for l = 0, . . . , L − 1. Put another way qφ(z|x) =
δEτ (x)(z) is a Dirac centered at Eτ (x).

Proposition 7 Under Assumption 2 the function HVAE(x, τ ) computed by Algorithm 2 coin-
cides with the denoiser Dθ,τ (x) defined in equation (48).

Proof. HVAE(x, τ ) is defined in Proposition 3 as

HVAE(x, τ ) = µθ (Eτ (x)) .

First observe that for a deterministic encoder we also have pθ,τ (z|x) = δEτ (x)(z). Indeed for
any test function h:∫

h(z)pθ,τ (z|x)dz =

∫
h(z)qφ(z|x)pdata(x)/pθ(z)dz

= h(Eτ (x)) pdata(x)/pθ(Eτ (x))︸ ︷︷ ︸
Z(x)

.

And the normalization constant Z(x) should be equal to 1 because
∫
pθ,τ (z|x)dz = Z(x) = 1.

Hence pθ,τ (z|x) = qφ(z|x) = δEτ (x)(z).
Finally applying the definition of Dθ,τ (x) we obtain

Dθ,τ (x) =

∫
µθ (z) pθ,τ (z|x)dz = µθ (Eτ (x))

= HVAE(x, τ).

�
Combining Propositions 7, 3 and 6 we obtain a new characterization of fixed points as critical

points.

Corollary 2 Under Assumption 2 x∗ is a fixed point of T if and only if

∇f(x∗) +∇g(x∗) = 0 (50)

where g(x) = − log pθ,τ (x).



Proof. From Proposition 6 we have that

−∇g(x) =
1

γ2
(Dθ,τ (x)− x) .

From Proposition 7 we have that (under Assumption 2) Dθ,τ (x) = HVAE(x, τ). In combina-
tion with the previous result:

−∇g(x) =
1

γ2
(HVAE(x, τ)− x) .

Finally, Proposition 3 allows to conclude that

−∇g(x) = ∇f(x).

�

9. Details on PatchVDVAE architecture
In this section, we provide additional details about the architecture of PatchVDVAE. Then,

we present the choice of the hyperparameters used for the concurrent methods (presented in
section 6 of the main paper) .

9.1. PatchVDVAE

Figure 9 provides a detailed overview of the structure of a PatchVDVAE network. The ar-
chitecture follows VDVAE model [1], except for the first top-down block, in which we replace
the constant input by a latent variable sampled from a Gaussian distribution. The architecture
presented in figure 9 illustrates the structure of HVAE networks, but the number of blocks is
different to the PatchVDVAE network used in our experiments. Our PatchVDVAE top-down
path is composed of L = 30 top-down blocks of increasing resolution. The image features are
upsampled using an unpooling layer every 5 blocks. The first unpooling layer performs a ×4
upsampling, and the following unpooling layers perform ×2 upsampling. The dimension of
the filters is 256 in all blocks. In order to save computations in the residual blocks, the 3 × 3
convolutions are applied on features of reduced channel dimension (divided by 4). 1× 1 convo-
lutions are applied before and after the 3 × 3 convolutions to respectively reduce and increase
the number of channels. The latent variables zl are tensors of shape 12 × Hl × Wl, where
the resolution Hl, Wl corresponds to the resolution of the corresponding top-down-block. The
bottom-up network structure is symmetric to the top-down network, with 5 residual blocks for
each scale, and pooling layers between each scale.

9.2. Hyperparameters of compared methods

Face image restoration. For ILO, we found that optimizing the first 5 layers of the generative
network offered the best trade-off between image quality and consistency with the observation.



Conv 1 × 1

Conv 3 × 3

Conv 3 × 3

Conv 1 × 1

µθ,l(z<l) Σθ,l(z<l)

zl

Conv 1 × 1

Residual block

Concat

Conv 1 × 1

Conv 3 × 3

Conv 3 × 3

Conv 1 × 1

µφ,l(z<l,x) Σφ,l(z<l,x)

from

BU

Top-down block

Top-down block

Top-down block

Top-down block

Unpool

ResBlock

z0

Conv 1 × 1

µθ (z<L) Σθ (z<L)

Residual block

Residual block

Residual block

Pooling

µφ,0 (x) Σφ,0 (x)

x

Full autoencoder architecture

Conv 1× 1

Conv 3× 3

Conv 3× 3

Conv 1× 1

Residual block

Figure 9: Structure of the PatchVDVAE architecture. For clarity, we omit the non-linearity after
each convolution.

Hence, we optimize the 5 first layers for 100 iterations each. This choice is different from the
official implementation, where they only optimize the 4 first layers for a lower number of itera-
tions, trading restoration performance for speed. For DPS, we set the scale hyper-parameter ζ ′

(described in subsection C.2 in[2]) to ζ ′ = 1 for the deblurring and super-resolution experiments
reported in this paper.



Natural images restoration - Deblurring. For the three tested methods, we use the official
implementation provided by the authors, along with the pretrained models. For EPLL, we use
the default parameters in the official implementation.

For GS-PnP, using the notation of the paper, we use the suggested hyperparameter λν = 0.1
for the motion blur kernels and λν = 0.75 for the Gaussian kernels.

For PnP-MMO, we use the denoiser trained on σden = 0.007. On deblurring with σ = 2.55
we use the default parameters in the implementation. for higher noise levels (σ = 7.65; σ =
12.75), and we set the strength of the gradient step as γ = σden/(2σ||h||), where h corresponds
to the blur kernel.

Natural images restoration- Inpainting. For EPLL, we use the default parameters provided
in the authors matlab code. For GS-PnP, after a grid-search, we chose to set λν = 1 and
σdenoiser = 10.

10. Discussion on the conctractivity of HVAE
We showed in section 5 that PnP-HVAE converges to a fixed point under the assumption

that x → HVAE(x, τ) is contractive. If this condition is met, the sequence of uk defined by
uk+1 = HV AE(uk, τ) should converge to a fixed point. Figure 10 presents the evolution of a
fixed point iteration uk+1 = HV AE(uk, τ). The image is smoothened over the iterations, and
finally converges to a piececewise constant image. We used patchVDVAE for this experiment.

k = 0 k = 100 k = 600 k = 1600 MSE(uk+1, uk)

Figure 10: Fixed-point iterations of patchVDVAE for τ = 0.99.

11. Comparisons
In this section, we provide additional visual results on face images and natural images.

11.1. Additional results on face image restoration

We provide additional comparisons with the GAN-based ILO method on inpainting (fig-
ure 11),×4 super-resolution (figure 12) and deblurring (figure 13). PnP-HVAE provides equally
or more plausible glasses in the first column) inpaiting than ILO. For superresolution, ILO pro-
duces sharper but not realistics faces. This is an agreement with the scores presented in table 1).
For deblurring, ILO creates textures on faces that looks realistic (low LPIPS) but are less con-
sistent with the observation (significantly lower PSNR and SSIM).
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Figure 11: Inpainting

11.2. Additional results on natural images restoration

We finally present additional results on natural images restoration. All the PnP-HVAE im-
ages presented below were produced using our PatchVDVAE model. We also provide visual
comparisons with concurrent PnP methods and EPLL. For deblurring (figures 15 and 16, PnP
methods perform better than EPLL. Following quantitative results of figure 2, for larger noise
level, PnP-HVAE outperforms PnP-MMO and provides restoration close to GS-PnP.

For inpainting (figure 17), the hierarchical structure of PatchVDVAE leads to more plausible
reconstructions, and PnP-HVAE outperforms the compared methods.
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Figure 12: ×4 super-resolution, with kernel (a) from Figure 14 and σ = 3
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Figure 13: Deblurring, with kernel (d) from Figure 14 and σ = 8

(a) (b) (c) (d)

Figure 14: Kernels used for deblurring experiments, from [3]
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(a) kernel (a), σ = 2.55

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(b) kernel (c), σ = 2.55

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(c) kernel (a), σ = 7.65

Figure 15: Deblurring results on BSD



blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(a) kernel (d), σ = 7.65

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(b) kernel (b), σ = 12.75

blurry EPLL PnP-MMO GS-PnP PnP-HVAE GT

(c) kernel (d), σ = 12.75

Figure 16: Deblurring results on BSD



GT Masked EPLL GS-PnP PnP-HVAE

Figure 17: Natural images inpainting
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