
Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation
— Supplementary Material —

Gilles Puy1 Alexandre Boulch1 Renaud Marlet1,2

1valeo.ai, Paris, France 2LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

Contents

A. WaffleIron Implementation 1
B. Instance Cutmix and Polarmix on Se-

manticKITTI 1
C. Input Features, dimension F , and Stochastic

Depth on nuScenes 1
D. Visual Inspections 1
E. Number of Parameters and Inference time 2

A. WaffleIron Implementation

We present in Listing 1 an example of a code implement-
ing the WaffleIron backbone in PyTorch [3]. We recall that
this backbone takes as input point tokens provided by an
embedding layer and outputs updated point tokens used in
a linear classification layer for semantic segmentation. The
implementation consists of applications of basic layers di-
rectly to each point tokens (batch normalizations, 1D and
2D convolutions, matrix-vector multiplications).

The step which is, maybe, the most technical to imple-
ment is the construction of the sparse matrices (line 56 of
Listing 1) for projections from 3D to 2D. For complete-
ness, we provide the corresponding code as well in List-
ing 2. Creating these sparse matrices requires computing
the mapping between each 3D point and each 2D cell. Note
that the sole computations needed to get this mapping re-
duces to lines 15 and 17 of Listing 2. The rest and majority
of the code concerns the creation of arrays to build the cor-
responding sparse matrices.

B. Instance Cutmix and Polarmix on Se-
manticKITTI

In complement to Sec. 4.5 in the main paper, we show in
Fig. 4 the benefit of combining the augmentations polarmix
[4] and instance cutmix [6, 5] over instance cutmix alone
for training on SemanticKITTI [1]. The combination allows
to us to improve the mIoU% by 1.5 point on average, with
the most notable improvements in the classes bicycle, other-
vehicle and person.

Architecture & Training hyparameters mIoU%

F = 256 & 3-dim hi 76.1
F = 256 & 5-dim hi 76.6
F = 384 & 5-dim hi 76.9
F = 384 & 5-dim hi & Stoch. depth 77.6

Table 5. Influence of F , input vectors hi, and stochastic depth on
the performance of WaffleIron on nuScenes. We train and evaluate
WaffleIron-48-F backbones on the official train and validation set,
respectively. We report the average mIoU% obtained at the last
training epoch of two independent runs.

C. Input Features, dimension F , and Stochas-
tic Depth on nuScenes

We present in Tab. 5 the interest of successively: us-
ing 5-dimensional input vectors hi (intensity, x, y, z, and
range of pi) instead of 3-dimensional input vectors (inten-
sity, height=z, range); increasing F from 256 to 384; and
using stochastic depth during training on nuScenes. We no-
tice that each of these ingredients improves the mIoU% to
finally reach 77.6 on average over two independent training.

D. Visual Inspections

Segmentation results. We present in Fig. 5 and Fig. 6 vi-
sualizations of semantic segmentation results obtained with
our method on the validation set of nuScenes [2] and Se-
manticKITTI [1], respectively. The official color codes for
these visualizations are recalled in Fig. 7. We notice that,
overall, the segmentation are of good quality. Neverthe-
less, we remark sometimes confusion between the sidewalk
and the road on nuScenes (row 1 and 3 in Fig. 5). We no-
tice as well some wrongly classified points when the veg-
etation overlaps a building in the last row of Fig. 5. On
SemanticKITTI, we notice essentially some confusion be-
tween terrain and vegetation, especially in row 1 and 3 of
Fig. 6.

2D features maps. For illustration purposes, we provide



car

bicy
cle

motorcy
cle tru

ck

other-
veh

icl
e
pers

on

bicy
cli

st

motorcy
cli

st
road

park
ing

sid
ew

alk

other-
ground

bu
ild

ing
fen

ce

veg
eta

tio
n

tru
nk

ter
rai

n
pole

tra
ffic-s

ign
mIoU

0
5
0

1
0
0

9
4
.8

4
4
.2

6
5
.9

7
9
.4

3
3
.4

6
3
.8

8
3
.3

0

9
5

4
7
.5

8
3
.2

0

9
0
.5

6
1

8
8
.7

6
8
.1

7
6
.9

6
3
.4

4
8
.7

6
2
.5

9
5
.4

5
1
.9

7
6

7
3
.9

4
8
.1

7
5
.1

9
2
.9

0
.2

9
4
.7

4
9
.5

8
2
.7

0
.3

9
1
.2

6
2
.7

8
8
.2

6
8
.8 7
5
.5

6
3
.8

5
0
.5

6
5
.3

9
5
.8

5
7
.9

7
6
.1 8
2
.4

5
2
.7

7
8
.2

9
3

0
.2

9
5
.3

5
0
.7

8
3
.5

3
.2

9
1
.4

6
4
.6

8
7
.6

6
9
.4 7
3
.5

6
3
.9

5
0
.2

6
6
.8

Baseline Baseline + Instance Cutmix Baseline + Polarmix + Instance Cutmix

Figure 4. Performance of WaffleIron when using baseline augmentations (rotation, flip axis, scaling), when adding instance cutmix, or when
adding instance cutmix and polarmix together. We train a WaffleIron-48-256 backbone on the train set of SemanticKITTI and compute the
mIoU on the corresponding validation set. We report the average mIoU% obtained at the last training epoch of two runs.

in Fig. 8 and Fig. 9 visualizations of 2D feature maps ob-
tained after projection at different layers ℓ of WaffleIron, for
nuScenes and SemanticKITTI, respectively.

E. Number of Parameters and Inference time
The largest WaffleIron models that we trained in this

work, WaffleIron-48-256 and WaffleIron-48-384, contain
only 6.8 M and 15.1 M trainable parameters, respectively.
This stays smaller than, e.g., Cylinder3D [7], which has
more than 50 M parameters.

The inference time for WaffleIron-48-256 is provided in
the core of the paper. This inference time does not include
data pre-processing. Yet, the only noticeable extra step re-
quired in our method for data pre-processing, compared to
networks using sparse convolutions, is the nearest neighbor
search required to compute the point tokens in the embed-
ding layer. Note that this embedding layer is not tied to our
proposed backbone WaffleIron; one could design other em-
bedding layers not requiring this nearest neighbor search.

In order to further accelerate inference while keeping the
simplicity of implementation of WaffleIron, we can think of
the following possibilities which we leave for future work.

• Reduce the number of point tokens by increasing the
voxel size used for voxel-downsampling during pre-
processing. We used square voxels of size 10 cm,
while the 2D grids in the WI blocks have a resolution
of 60 cm on nuScenes, and 40 cm on SemanticKITTI.
We can probably downsample the point clouds further
during pre-processing with limited impact on the per-
formance.

• Construct a new embedding layer that outputs a re-
duced number of point tokens, especially in regions
that are highly sampled by the lidar and that contain
redundant information.



1 import torch
2 import numpy as np
3 import torch.nn as nn
4

5

6 class ChannelMix(nn.Module):
7 def __init__(self, channels):
8 super().__init__()
9 # Number of channels denoted by F in the paper

10 F = channels
11 # Layers in channel mixing step
12 self.norm = nn.BatchNorm1d(F)
13 self.mlp = nn.Sequential(nn.Conv1d(F, F, 1), nn.ReLU(), nn.Conv1d(F, F, 1))
14 self.layerscale = nn.Conv1d(F, F, 1, bias=False, groups=F)
15

16 def forward(self, tokens):
17 return tokens + self.layerscale(self.mlp(self.norm(tokens)))
18

19

20 class TokenMix(nn.Module):
21 def __init__(self, channels, grid_shape):
22 super().__init__()
23 # Shape of 2D grid on projection plane
24 self.H, self.W = grid_shape
25 # Number of channels denoted by F in the paper
26 F = channels
27 # Layers in token mixing step
28 self.norm = nn.BatchNorm1d(F)
29 self.ffn = nn.Sequential(
30 nn.Conv2d(F, F, 3, padding=1, groups=F), nn.ReLU(), nn.Conv2d(F, F, 3, padding=1, groups=F)
31 )
32 self.layerscale = nn.Conv1d(F, F, 1, bias=False, groups=F)
33

34 def forward(self, tokens, sp_mat):
35 B, C, N = tokens.shape
36 # Flatten
37 residual = torch.bmm(sp_mat["flatten"], self.norm(tokens).transpose(1, 2)).transpose(1, 2)
38 # FFN with channel-wise 2D convolutions with kernels of size 3 x 3
39 residual = self.ffn(residual.reshape(B, C, self.H, self.W)).reshape(B, C, self.H * self.W)
40 # Inflate
41 residual = torch.bmm(sp_mat["inflate"], residual.transpose(1, 2)).transpose(1, 2)
42 return tokens + self.layerscale(residual.reshape(B, C, N))
43

44

45 class WaffleIron(nn.Module):
46 def __init__(self, channels, depth, grids_shape):
47 super().__init__()
48 self.grids_shape = grids_shape
49 self.channel_mix = nn.ModuleList([ChannelMix(channels) for _ in range(depth)])
50 self.token_mix = nn.ModuleList(
51 [TokenMix(channels, grids_shape[l % len(grids_shape)]) for l in range(depth)]
52 )
53

54 def forward(self, tokens, non_zeros_ind):
55 # Build projection matrices
56 sp_mat = [build_proj_matrix(ind, tokens.shape[0], np.prod(sh))
57 for ind, sh in zip(non_zeros_ind, self.grids_shape)]
58 # Forward pass in backbone
59 for l, (smix, cmix) in enumerate(zip(self.token_mix, self.channel_mix)):
60 tokens = smix(tokens, sp_mat[l % len(sp_mat)])
61 tokens = cmix(tokens)
62 return tokens

Listing 1. Pytorch implementation of WaffleIron. This backbone takes as input point tokens provided by an embedding layer, and outputs
updated point tokens used in a linear classification layer for semantic segmentation. The implementation of the embedding layer and the
classification layer are not presented here. The code to construct the sparse projection matrices on line 57 is presented in Listing 2.



1 def get_non_zeros_ind(point_coord, plane_axes, grid_shape, fov_xyz_min, resolution):
2 """
3 Mapping between point indices and 2D cell indices for the projection from 3D to 2D.
4 Inputs:
5 ‘point_coord’: xyz-coordinates of the points to project (array of size num_points x 3).
6 ‘planes_axes’: axis encoding of projection planes, e.g., ‘planes_axes=(0,1)’ for the (x,y)-plane.
7 ‘grid_shape’: shape of 2D grid on projection plane, e.g., ‘grid_shape=(128,128)’.
8 ‘fov_xyz_min’: lowest xyz-bounds of the FOV (array of size 1 x 3)
9 ‘resolution’: resolution of 2D grid (scalar)

10 Output:
11 indices of non-zero entries in sparse matrix for the projection from 3D to 2D.
12 """
13

14 # Quantize point cloud coordinates at desired resolution
15 quant = ((point_coord - fov_xyz_min)[:, plane_axes] / resolution).astype(’int’)
16 # Transform quantized coordinates to 2D cell indices
17 cell_indices = quant[:, 0] * grid_shape[1] + quant[:, 1]
18

19 # Indices of non-zeros entries in sparse matrix for projection from 3D to 2D.
20 num_points = quant.shape[0]
21 indices_non_zeros = torch.cat([
22 # Batch index (batch size of 1 here)
23 torch.zeros(1, num_points).long(),
24 # Index of corresponding 2D cell for each point
25 torch.from_numpy(cell_indices).long().reshape(1, num_points),
26 # Index of each point
27 torch.arange(num_points).long().reshape(1, num_points)
28 ], axis=0)
29

30 return indices_non_zeros
31

32

33 def build_proj_matrix(indices_non_zeros, batch_size, num_2d_cells):
34 """
35 Construct sparse matrices for the projection from 3D to 2D and vice versa.
36 Inputs:
37 ‘indices_non_zeros’: indices of non-zero entries in sparse matrix for projecting from 3D to 2D.
38 ‘batch_size’: batch size.
39 ‘num_2d_cells’: number of cells in the 2D grid.
40 Outputs:
41 sparse projection matrices for the Flatten and Inflate steps.
42 """
43 num_points = indices_non_zeros.shape[1]
44 matrix_shape = (batch_size, num_2d_cells, num_points)
45

46 # One non-zero coefficient per point (set to 1) in sparse matrix for inflate step
47 ones = torch.ones(batch_size, num_points, 1, device=indices_non_zeros.device)
48

49 # Sparse projection matrix for Inflate step
50 inflate = torch.sparse_coo_tensor(indices_non_zeros, ones.reshape(-1), matrix_shape)
51 inflate = inflate.transpose(1, 2)
52

53 # Count number of points in each cells (used in Flatten step)
54 num_points_per_cells = torch.bmm(inflate, torch.bmm(inflate.transpose(1, 2), ones))
55

56 # Sparse projection matrix for Flatten step (projection & average in each 2d cells)
57 weight_per_point = 1. / num_points_per_cells.reshape(-1)
58 flatten = torch.sparse_coo_tensor(indices_non_zeros, weight_per_point, matrix_shape)
59

60 return {"flatten": flatten, "inflate": inflate}

Listing 2. Code to construct the sparse projection matrices used in WaffleIron. Note that we build two matrices for efficiency: one for the
Flatten step (‘flatten’) and one for the Inflate step (‘inflate’). The matrix ‘flatten’ combines (i) projection to 2D and (ii) averaging in each
2D cell, i.e., implements Eq. (4) directly. The matrix ‘inflate’ corresponds to S in Eq. (5).



Ground truth WaffleIron’s result Wrong classifications in red

Figure 5. Visualization of semantic segmentation results on the validation set of nuScenes obtained with WaffleIron.



Ground truth WaffleIron’s result Wrong classifications in red

Figure 6. Visualization of semantic segmentation results on the validation set of SemanticKITTI obtained with WaffleIron.



Color code used for nuScenes data

Color code used for SemanticKITTI data

Figure 7. Color code used to represent each class on nuScenes (top) and SemanticKIITI (bottom).



Sc
en

e
1

Flat(F (0)) - (x, y)-plane Flat(F (24)) - (x, y)-plane Flat(F (42)) - (x, y)-plane

Flat(F (1)) - (x, z)-plane Flat(F (25)) - (x, z)-plane Flat(F (43)) - (x, z)-plane

Sc
en

e
2

Flat(F (0)) - (x, y)-plane Flat(F (24)) - (x, y)-plane Flat(F (42)) - (x, y)-plane

Flat(F (1)) - (x, z)-plane Flat(F (25)) - (x, z)-plane Flat(F (43)) - (x, z)-plane

Figure 8. Visualization of 2D features maps obtained after the Flatten step at different layers ℓ of WaffleIron on two scenes of the validation
set of nuScenes. The feature maps are colored by reducing the F -dimensional features to a 3-dimenional space using t-SNE.



Sc
en

e
1

Flat(F (0)) - (x, y)-plane Flat(F (24)) - (x, y)-plane Flat(F (42)) - (x, y)-plane

Flat(F (1)) - (x, z)-plane Flat(F (25)) - (x, z)-plane Flat(F (43)) - (x, z)-plane

Sc
en

e
2

Flat(F (0)) - (x, y)-plane Flat(F (24)) - (x, y)-plane Flat(F (42)) - (x, y)-plane

Flat(F (1)) - (x, z)-plane Flat(F (25)) - (x, z)-plane Flat(F (43)) - (x, z)-plane

Figure 9. Visualization of 2D features maps obtained after projection at different layers ℓ of WaffleIron on two scenes of the validation set
of SemanticKITTI. The feature maps are colored by reducing the F -dimensional features to a 3-dimensional space using t-SNE.



References
[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,

C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-
mantic Scene Understanding of LiDAR Sequences. In ICCV,
2019. 1

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuScenes: A multimodal
dataset for autonomous driving. In CVPR, 2020. 1

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems, 2019. 1

[4] Aoran Xiao, Jiaxing Huang, Dayan Guan, Kaiwen Cui, Shi-
jian Lu, and Ling Shao. PolarMix: A General Data Augmen-
tation Technique for LiDAR Point Clouds. In NeurIPS, 2022.
1

[5] Jianyun Xu, Ruixiang Zhang, Jian Dou, Yushi Zhu, Jie Sun,
and Shiliang Pu. RPVNet: A Deep and Efficient Range-Point-
Voxel Fusion Network for LiDAR Point Cloud Segmentation.
In ICCV, 2021. 1

[6] Xu Yan, Jiantao Gao, Chaoda Zheng, Chao Zheng, Ruimao
Zhang, Shuguang Cui, and Zhen Li. 2DPASS: 2D Priors As-
sisted Semantic Segmentation on LiDAR Point Clouds. In
ECCV, 2022. 1

[7] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma,
Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and Asym-
metrical 3D Convolution Networks for LiDAR Segmentation.
In CVPR, 2021. 2


