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This supplementary material document provides more
statistical information of and results of ablation study exper-
iments performed on the EntitySeg dataset. Furthermore,
we offer more visualization of the EntitySeg dataset and ex-
perimental results for the proposed CropFormer. The sup-
plementary material is organized as follows:

• The statistical information of the EntitySeg dataset.
• The experiment setting details left out in the main pa-

per.
• More ablation study experiments on our baseline

Mask2Former [3] and the proposed CropFormer.

as well as:

• More visualization results of our proposed Crop-
Former.

• More visualization examples from EntitySeg dataset.
• More visualization examples in the wild including

FSS [9], CAMO [8], OCID [15] and LVIS [5].

1. EntitySeg Dataset

Statistics of category numbers at pixel level Figure 1
shows the class frequency distribution at the pixel level.
Compared to the entity-level category numbers in Fig-
ure 3 of our paper, the top classes (ranked by pixel-
level frequency) mostly belong to stuff in the EntitySeg
dataset. This phenomenon is similar to the COCO [10] and
ADE20K [16] dataset, where the stuff classes usually have
larger areas than thing classes.

Statistics of category numbers at entity level Figure 2
shows the class frequency distribution which follows Zipf’s
law, resembling existing datasets like COCO [10] and
ADE20K [16].

*Equal contribution. † indicates corresponding author.

Algorithm 1 The Calculation of Simplicity and Complexity
Pseudocode (Python-like)

import numpy as np
import cv2

convexity_count = 0
simplicity_count = 0
for mask in masks:

cnt = cv2.findContours(mask, cv2.RETR_LIST, cv2.
CHAIN_APPROX_NONE)[0]

perimeter_inst = 1e-8
for cnt_ in cnt:

perimeter_inst += cv2.arcLength(cnt_, True)
hull = cv2.convexHull(np.transpose(np.nonzero(

mask)))
convexhall_inst_area = cv2.contourArea(hull)
simplicity_inst = math.sqrt(4*math.pi*mask.sum())

/ perimeter_inst
convexity_inst = mask.sum()/convexhall_inst_area

convexity_count += np.clip(convexity_inst,0,1)
simplicity_count += np.clip(simplicity_inst,0,1)

convexity = convexity_count / len(masks)
simplicity = simplicity_count / len(masks)

Simplicity and complexity The shape convexity and sim-
plicity of an entity’s mask S are measured by Eq. 1 and Eq.
2 following [17, 13]:

convexity(S) =
Area(S)

theArea(ConvexHull(S))
. (1)

simplicity(S) =

√
4π ∗Area(S)

Perimeter(S)
. (2)

where large convexity and simplicity values imply that the
mask is a simple shape (and both metrics achieve their max-
imum value of 1.0 for a circle [17]). We attach the pseudo
code as follows:

2. Experiments
For the training set, we use the same hyper-parameters

of the COCO training except for the training iterations
and learning rate steps considering the dataset size differ-
ence. Our EntitySeg dataset adopts 1× training schedule as
34,375 iterations and decays learning rate after 30,525 and
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The Distribution of Category in Pixel Level

Figure 1: The class distribution of the EntitySeg dataset at pixel level. Please zoom in on the x-axis of the figure to view the
class names.

Figure 2: The class distribution of the EntitySeg dataset. Here we mention if a class belongs to thing or stuff. Please zoom in
on the x-axis of the figure to see the class names.

33,138 iterations. N× training schedule indicates that the
number of iterations and learning rate decay schedule is ad-
justed by a factor of N. Given the EntityClass dataset has
only one-third image numbers of the EntitySeg dataset, the
1× training schedule is sufficient to obtain the best perfor-
mance on class-aware segmentation tasks. AdamW [12] is
used as the optimizer with a base learning rate of 0.0001
and batch size of 16.

2.1. Class-aware Segmentation Tasks

Entity Segmentation. We split the EntitySeg dataset into
train and test sets with 31,913 and 1,314 images. We use
class-agnostic metric APe [14] with a strict non-overlapping
mask constraint for evaluation on the entity segmentation
task. To reduce the bias of dataset split, we constructed 20
random dataset splits. Fig. 3 shows the ablation study on
randomly sampled train/test splits in our EntitySeg dataset
for entity segmentation. Overall, we sample the split pairs
by 20 times and then train/test Mask2Former [3] with every
pair. And the mean and standard variance of APe is 39.5
and 0.9. Finally, we choose the split whose APe is closest
to 39.5.

Table 1 shows the benchmark of our EntitySeg
dataset with Mask-RCNN [6], EntityFramework [14],
Mask2Former [4]. The first two methods are convolution-
based dense prediction methods, and the last is a
Transformer-based query prediction method. In Table 1,
the Transformer-based Mask2Former performs better than
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Figure 3: The study on multiple randomly-sampled train/-
validation splits for EntitySeg dataset.

the other two convolution-based methods on all metrics,
demonstrating the advantage of transform-based methods
on high-quality mask generation. We witness that the
COCO-E pretrained weights can further boost entity seg-
mentation performance. We also explored the optimal train-
ing iterations needed by Mask2Former and found that it per-
forms the best with 3× training schedule.

Semantic Segmentation. In Table 2, we evaluate the two
popular semantic segmentation methods DeeplabV3 [1] and
Mask2Former [4] on EntitySem. Specifically, we choose



Model Backbone Iteration Pretrain APe APe
50 APe

75

Mask-RCNN [6] Swin-T 1× ImageNet 24.9 45.8 24.1
COCO-E 28.4 49.2 28.1

EntityFramework [14] Swin-T 1× ImageNet 26.0 42.8 25.7
COCO-E 29.9 47.6 30.1

Mask2Former [4] Swin-T

1× ImageNet 33.2 50.2 33.1

COCO-E

39.5 56.9 40.2
2× 40.2 57.6 41.1
3× 40.9 58.1 41.6
4× 40.9 57.9 41.9

Swin-L 3× 46.2 63.7 47.5

Table 1: Entity segmentation benchmark in Entity Dataset.
The column of ‘Pretrain’ indicates the pretraining weights
we used where the ‘ImageNet’ is ImageNet pretraining and
‘COCO-E’ refers to pretraining on COCO dataset that has
been converted to class-agnostic entity segmentation format
[14].

Model Backbone Pretrain mIoU
DeeplabV3 [2] R-50 ImageNet 27.9

Mask2Former [4]

R-50 ImageNet 37.8
COCO-P 43.3

Swin-T COCO-E 43.0
COCO-P 45.0

Swin-L COCO-E 50.7
COCO-P 50.5

Table 2: Benchmark on class-aware semantic segmentation
in EntitySem Dataset. The ‘COCO-P’ and ‘COCO-E’ in-
dicate weights trained in the COCO datasets with panoptic
and entity segmentation tasks.

150 categories with the highest pixel-level frequency as En-
titySem for semantic segmentation. EntitySem has 9,729
and 1,444 images for training and testing, respectively. We
can see that semantic segmentation performance is still
related to the pretraining weights and network structure.
Mask2Former with Swin-L backbone and COCO-E pre-
trained weights obtains the mIoU of 50.5 on EntitySem.

Instance Segmentation. In Table 3, we ablate two
popular instance segmentation methods including Mask-
RCNN [6] and Mask2Former [4] on EntityIns. We select
206 thing categories with the highest object-level frequency
in the EntityClass dataset to benchmark instance segmen-
tation. In the EntityIns, 8,993 and 1,498 images for train-
ing and testing, respectively. We can see that Mask2Former
with Swin-L backbone and COCO-P pretrained weights the
best AP of 30.3 on EntityIns.

Panoptic Segmentation. Table 4 shows the performance
of two popular panoptic segmentation methods, including
PanopticFPN [7] and Mask2Former [4]. Similar to Enti-
tyIns, we select 345 categories, including 274 things and 71
stuffs, with the highest entity-level frequency to construct
EntityPan. There are 9,968 and 1,481 images for training
and testing. We find that the task becomes more challeng-
ing with the greater variety of class labels. E.g., in Ta-
ble 4, the PQs are much lower than those of existing panop-
tic datasets. In addition, current methods perform worse
on EntityPan compared to existing datasets, especially on

Model Backbone Pretrain AP AP50 AP75

Mask-RCNN [6] R-50 ImageNet 5.0 9.3 4.9
COCO-I 11.9 18.9 12.4

Mask2Former [4]

R-50 ImageNet 13.0 19.6 13.3
COCO-I 20.3 29.2 21.0

Swin-T
COCO-E 20.0 28.8 20.7
COCO-I 22.5 32.4 23.5
COCO-P 22.7 32.7 23.5

Swin-L COCO-E 28.0 39.3 29.4
COCO-P 30.3 42.3 31.6

Table 3: Benchmark on class-aware instance segmentation
in Entity Dataset. The ‘COCO-I’ indicates weights trained
in the COCO datasets with instance segmentation tasks.

Model Backbone Pretrain PQ SQ RQ

PanopticFPN [7] R-50 ImageNet 3.6 25.8 5.5
COCO-P 6.7 36.4 10.1

Mask2Former [4]

R-50 ImageNet 5.5 26.3 8.2
COCO-I 9.6 39.0 14.1

Swin-T COCO-E 7.4 32.6 11.0
COCO-P 9.8 38.5 14.6

Swin-L COCO-E 11.7 43.2 17.3
COCO-P 13.4 48.7 19.9

Table 4: Benchmark on class-aware panoptic segmentation
on the Entity Dataset.

Full Image

Local crops
The query trained in original Mask2Fromer

Figure 4: Preliminary study on robustness of queries trained
in an image-level Mask2Former.

recognition quality (RQ), which adversely impacts PQ.

2.2. Entity Segmentation

The robustness of queries in image-level Mask2Former
Figure 4 shows the preliminary investigation on the robust-
ness of queries in an image-level Mask2Former. We find
that the same queries are not robust in representing the
same entities across different image crops. Thus we are not
able to utilize such queries to ensemble inference results of
same entities across multiple crops. That provides us with a
strong motivation to design CropFormer to solve the above-
mentioned limitation of Mask2Former.

The impact of input resolution We ablate the impact of
input resolution on the final performance. In Table 5, we
use the bilinear and nearest interpolation in OpenCV to re-
size the original image and annotation masks in EntitySeg
Dataset to the three kinds of sizes. We train Mask2Former
with such different size kinds and find that the perfor-



Resolution APe

(400, 677) 37.5
(800, 1333) 38.4

(1600, 2666) 39.1
original 39.5

Table 5: The study on the impact of the image and annota-
tion resolutions on Mask2Former training. ‘(x, y)’ indicates
the shorter side’s size and longer side’s maximum size, re-
spectively

.
Datloader Style Details APe

Mask2Former Scale(0.1, 2.0)→Crop(1024, 1024) 39.5
Mask-RCNN Scale to ((640, 800), 1333) 39.5

Table 6: The ablation study on the dataloader choice for
Mask2Former training. The column ‘Details’ describes
some details of the dataloader style.

Layers APe

3 40.6
6 40.8
9 41.0

Table 7: The ablation study on the number of Transformer
layers in the batch-level decoder in CropFormer.

mance degrades severely with input images and mask anno-
tations that are low in resolutions. This somehow suggests
that fine-grained entity segmentation can benefit greatly
from high-resolution training images, which are one of the
unique characteristics of our EntitySeg dataset.

Dataloader used in Mask2Former There are two kinds
of dataloaders are applicable to entity-level segmentation
tasks (e.g., panoptic segmentation, instance segmentation).
The first is the Mask2Former style, which scales the orig-
inal image with a random scale ratio (from 0.1 to 2.0) be-
fore cropping a region of 1024×1024. The second is the
Mask-RCNN style, which directly scales the original im-
age to {640, ..., 800}px for the shorter side and maximum
of 1,333px for the longer side. In Table 6, we compare
these two styles and find no difference between them when
applied to our baseline Mask2Former. To avoid further
cropping on the corner crops of CropFormer, we apply the
Mask-RCNN-style dataloader to CropFormer, as well as to
other experimented models for the sake of consistency.

The layers of transformer decoder in batch decoder
We ablate the number of layers used in the transformer de-
coder of the batch-level decoder in Table 7. We find that
using all nine layers could obtain the best performance.

Improvement with a stronger backbone Table 8 shows
that our proposed CropFormer with Swin-L [11] backbone

Backbone Method APe APe
50 APe

75

Swin-Large Mask2Former 46.2 63.7 47.5
CropFormer 48.0 65.3 49.3

Table 8: The results of from training CropFormer with a
stronger backbone.

Pretrain
(COCO-E)

Train
(EntitySeg)

Pretrain-Train
(Test on COCO-E)

Pretrain-Train
(Test on EntitySeg)

◦ ◦ 30.7→30.5 22.8→39.5
◦ ✓ 30.7→30.4 22.8→41.0
✓ ✓ 32.3→30.7 21.4→41.4

Table 9: The ablation study on using CropFormer in the
COCO-Pretraining stage. ◦ and ✓ respectively indicate that
CropFormer is used or not used in a particular stage. The
left side of → respectively. indicates the APe obtained by
the model pretrained on COCO-E, while the right side of →
indicates the APe obtained by the model trained on Entity-
Seg after COCO-E pretraining.

can still achieve a remarkable improvement of 1.8 APe,
which approximates the APe gain from training it with a
less strong Swin-T backbone. This suggests that the ef-
fects of CropFormer on fine-grained entity segmentation are
highly complementary with the benefits introduced by more
advanced backbones.

CropFormer used in COCO-E pretraining In Table 9,
we show the ablation study on whether using CropFormer
in the COCO-E pretraining stage. And we see that using
CropFormer in the COCO-E pretraining stage improves the
final performance slightly on the EntitySeg dataset. It is
likely because CropFormer is designed specifically to take
advantage of the high-resolution images and mask annota-
tions from EntitySeg dataset, instead of the low-resolution
ones from COCO dataset.

3. Visualization

3.1. Inference results of CropFormer

In Figure 5, 6 and 7, we show the qualitative results of
our CropFormer on EntitySeg test set. Based on the left-
to-right order, the five sub-figures are the original image,
the result of the full image (Batch-O), the result of ensem-
bling four crops (Batch-C), the result of ensembling both
the full image and four crops (Batch-OC), and the ground
truth, respectively. The same colors across the 2nd, 3rd, and
4th subfigures correspond to the same respective queries,
which demonstrate the effectiveness of batch-level queries
enabled by our proposed CropFormer which has the asso-
ciation ability to connect the same entities across different
image crops and the full image.
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Figure 5: The visualization results from our CropFormer with Swin-L backbone which has 48.0 APe on EntitySeg test set.

3.2. Ground Truth of EntitySeg Dataset

In Figure 8, 9, 10, 11 and 16, we show more visualization
examples from our EntitySeg Dataset to better demonstrate
the high-quality nature of the dataset.
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Original Image COCOAnnotation Our Annotation

Figure 8: More visualization examples for comparison between COCO annotations and ours.



Original Image ADE20KAnnotation Our Annotation

Figure 9: More visualization examples for comparison between ADE20K annotations and ours.



Original Image Cityscapes Annotation Our Annotation

Figure 10: More visualization examples for comparison between Cityscapes annotations and ours.



Figure 11: Visualization examples from our EntitySeg dataset.



Figure 12: Visualization examples from our EntitySeg dataset.



Figure 13: Visualization examples in CAMO [8] dataset. The left to right sub-figures is the original image, the visualization
results of Mask2Former in COCO panoptic segmentation, and the visualization results of CropFormer in EntitySeg entity
segmentation.



Figure 14: Visualization examples in FSS [9] dataset. The left to right sub-figures is the original image, the visualization
results of Mask2Former in COCO panoptic segmentation, and the visualization results of CropFormer in EntitySeg entity
segmentation.



Figure 15: Visualization examples in OCID [15] dataset. The left to right sub-figures is the original image, the visualization
results of Mask2Former in COCO panoptic segmentation, and the visualization results of CropFormer in EntitySeg entity
segmentation.



Figure 16: Visualization examples in LVIS [5] dataset. The left to right sub-figures is the original image, the visualization
results of Mask2Former in COCO panoptic segmentation, and the visualization results of CropFormer in EntitySeg entity
segmentation.


