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Appendix
In the appendix, we first show our motivation and then

present the details of the model architecture and training
process of our Sat2Density model. After that, we describe
the satellite and ground-view panorama camera models.
Last, we give more discussion about our work for a bet-
ter understanding of our paper and hope to advance viewing
remote sensing and ground imagery from a geometric per-
spective. Code, pretrained models, and more video results
can be found on our project page.

A. Motivation
Sat2Density focuses on the geometric nature of generat-

ing high-quality ground street views conditioned on satel-
lite images learning from collections of satellite-ground im-
age pairs. The long-suffered issue from the unknown 3D
information is addressed by separating the sky/non-sky re-
gions with reasonable 3D density volumes learned. We be-
lieve our new perspective on the longstanding yet challeng-
ing problem of satellite-ground novel view synthesis would
bring more insights for a wide range of 3D vision tasks, in-
cluding but not limited to (1) using satellite images for au-
tonomous driving with faithful 3D geometry, (2) providing
promising and novel solutions for visual localization with
satellite images.

B. Addition Implementation Details
B.1. DensityNet

The DensityNet is taken from the generator of
Pix2Pix [2]. Compared to vanilla Pix2Pix in PyTorch im-
plementations from pix2pix in PyTorch, our generator re-
places the activation function in the initial layer and down-
sample layers from ReLU to PReLU, sets the number of res-
block to 6, and replaces ReLU with Tanh in the last layer.
The final output of DensityNet is an explicit volume den-
sity Vσ ∈ RH×W×N , rather than predicting an image with
resolution H ×W × 3.

B.2. Illumination Injection

To inject the illumination, we first calculate the RGB
histogram of the sky region in ground image with 90 bins
in each color channel. Following the way process style in
GANcraft[1], we use a style encoder to predict a style code,
then use an MLP that is shared across all the style condition-
ing layers to convert the input style code to an intermediate
illumination feature. The key difference is that the input of

the style encoder is a histogram rather than an image. When
inference, we could randomly select a histogram as the illu-
mination input, at the same time, interpolation in the z space
between two histograms is also allowed. The interpolation
visualization video result can be seen on the project page.

B.3. RenderNet

The RenderNet is a variation of Pix2Pix [2]. As shown
in Figure 1, the key difference is that we inject the style
feature in the last three Upsample blocks, which includes
the illumination information of the groundtruth image dur-
ing training, thereby mitigating the effects of illumination
changes.
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Figure 1. The architecture of RenderNet. We inject the illumina-
tion feature in the decoder.

B.4. Discriminator

The discriminator we use is a multi-scale discriminator
that differs from the vanilla multi-scale discriminator used
in pix2pixHD [4]. While the vanilla discriminator operates
on images of different scales, we use three discriminators:
D1, D2, and D3. D1 works on panorama images, while
D2 and D3 operate on perspective images obtained by ran-
domly sampling from the input panorama using a perspec-
tive transformation, but at different scales. The two discrim-
inators operate on perspective images because the distortion
on the upper and lower bounds of the panorama is challeng-
ing for the convolution layer. Specifically, the field of view
(FOV) of the sampled perspective images is 100. In our
ablation study, all results use the same multi-scale discrimi-
nator. The input image size for D1, D2, and D3 is 64×256,
64× 64, and 32× 32 respectively.

B.5. Additional Training Details

The weight for L1 loss, L2 loss, KL loss, feature match-
ing loss, perceptual loss, Lsnop and GAN loss are 1, 10, 0.1,
10, 10, 1, 1 respectively when training. In volume render-
ing, we sample 100 points along each ray.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


C. Satellite and Panorama camera model
Actually, there are no given camera instincts in the orig-

inal CVUSA and CVACT datasets, which only contain im-
age pairs collected from Google Earth in the same loca-
tion by GPS, we follow the assumptions in Shi et al. [3],
which assumes that satellite images show the top of objects
in an overhead view, which approximates parallel projec-
tion, while street-view panoramas capture scenes at ground
level with a spherical equirectangular projection.

To describe a panoramic image with a 360-degree hor-
izontal and 180-degree vertical field of view, we use the
equirectangular projection and spherical coordinate system.
To accomplish this, we assign the camera location as o, and
the width and height of the panorama image as w and h,
respectively. We use x and y as the pixel coordinates of the
image pixel under consideration, and then we can use the
following equations to determine the azimuthal and zenith
angle θ and ϕ, respectively:

θ =
2πx

w
, ϕ =

πy

h

The equation allow us to determine the view direction d
through any given image pixel.

We illustrate the orientation corresponding to the
CVACT (align) dataset in Figure 2, where the same color
indicates the same direction.

(a) satellite (b) panorama
Figure 2. Here is an example of an aligned satellite and ground
panorama image pair from the training dataset. In the satellite im-
age, the north direction is upward, while in the ground panorama
image, the central column line represents the north direction. Both
display the same red color. The central horizontal line in the
panorama corresponds to the horizon.

D. Discussion
D.1. Urban scenes

The nadir satellite image can not see the vertical surfaces
of tall buildings. Except for the issue of unseen vertical sur-
faces, two representative cases of tall buildings and transient
objects (e.g., cars) will challenge our method, though we
believe the geometric perspective would facilitate the task
for urban scenes.

D.2. Infinite region

We assume that objects beyond the top view coverage
in street view images only include the sky. It is hard to

find out which object (e.g. tree) lies outside of the satellite
scene, for we have no real 3d shape to find it. Nevertheless,
our assumption has shown clear effects, as evident from the
ablation study (2:34-3:50 in the project page video).

D.3. Assumption on horizontal ground planes

Sat2Density has the horizontal assumption as we did not
know the camera location and world coordinate system.
Another assumption we used is that the “world” is finite
and limited by the satellite image. The used datasets fol-
low these two assumptions and provide 1-to-1 paired data.
Given by these facts, the movement of cameras is indeed
on the ground plane with a constant height (e.g., 2m in our
method and prior arts like [3]). From the perspective of
view synthesis, such assumptions should work well, but it
will inherently lead to inaccurate 3D scene geometry when
the whole ground region of a scene is sloped. To resolve
this problem, further studies could be explored with some
new problems: (1) how to estimate the slope from a single
orthogonally-rectified satellite image, and (2) how to de-
fine a proper world coordinate system and place the ground-
view camera(s) in the world.
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