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1. More Implementation Details

Optimal Transport Solution. For dense semantic distri-
bution alignment, we formulate it as an optimal transport
problem as:

min
πtj

HW∑
u=1

HW∑
v=1

−Ĉtj [u, v]πtj [u, v]

s.t.
HW∑
v=1

πtj [·, v] =
1

HW
1HW ,

HW∑
u=1

πtj [u, ·] =
1

HW
1HW ,

πtj [u, v] ≥ 0 u, v ∈ {1, 2, ...,HW},

(1)

where t, j is respectively temporal index, u, v is spatial in-
dex, −Ĉij denotes the transport cost, πtj is the transporta-
tion strategy, and the marginal distributions on source and
target are set to uniform distribution without requiring prior
in default. Inspired by [3, 1], we employ Sinkhorn-Knopp
algorithm [4] to solve this problem. In specific, we aim to
solve the following objective with regularization:

min
πtj

∑
u,v

−Ĉij [u, v]πij [u, v] + ϵ
∑
u,v

πij [u, v] log πij [u, v].

(2)

And the optimal solution can be written as

π∗
ij = Diag(x) exp(−cij

ϵ
)Diag(y), (3)

where x ∈ RHW and y ∈ RHW are renormalization vec-
tors calculated by iterative Sinkhorn-Knopp algorithm. We
set the hyper-parameter ϵ = 0.05, and use 3 iterations in
default.
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(a) Semantic Decomposition.
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(b) Instance Discrimination.

Figure 1. We compare the details of two slot attention stages.
For semantic decomposition, we initialize the slots with learnable
mean vectors, then follow standard slot attention iterations to gen-
erate semantic masks and semantic center representations as indi-
cated in Fig. 1(a). For instance discrimination, we randomly sam-
ple vectors from each learnable Gaussian distribution as slot ini-
tialization for each semantics, then perform masked slot attention
with obtained semantic mask as reference and generate instance
segmentation and representations. We use red line to indicate the
difference between the masked slot attention and standard slot at-
tention in Fig. 1(b).

Semantic-aware Masked Slot Attention Formulation.
We present the details of two slot attention stages in our
semantic-aware masked slot attention, i.e., semantic-aware
slot attention stage for semantic decomposition, masked slot
attention stage for instance discrimination. We compare the
two slot attention stages in Fig. 1.

For the first stage semantic-aware slot attention designed
for semantic decomposition, we use the learnable mean vec-
tors µ = {µ1, µ2, ..., µN} ∈ RN×D as slot initialization,
each representing a potential semantic center. Note that the
softmax and normalize in Fig. 1(a) respectively de-
notes the softmax operation on slot dimension N , and L1

normalization on spatial dimension HW . The iterative at-



Encoder Dist. IoU J&F

ViT-S/16
Uniform 71.8 40.5
CAAM 72.1 40.8

Attention 73.3 41.3

ResNet-50 Uniform 66.4 39.0
CAAM 68.1 39.8

Table 1. Ablation studies on the marginal distribution formula-
tion in optimal transport. We compare default uniform distribu-
tion, normalized class-agnostic activation map [2], and the atten-
tion score between cls token and spatial feature tokens from the
last layer of ViT encoder. We report the results on single object
benchmark DAVIS-2016 and multiple object benchmark DAVIS-
2017-Unsupervised.

tention calculation and slot update are the same as the stan-
dard slot attention in [5], and finally output semantic seg-
mentation masks of size RN×HW , semantic center repre-
sentations of size RN×D.

For the second stage masked slot attention designed for
instance discrimination, we run this stage on N semantics in
parallel, i.e., first discriminate instances of the same seman-
tics then aggregate the results of all semantics. In specific,
for n-th semantics, we randomly sample vectors from the
learnable Gaussian distribution N (µn, diag(σn)) as slot ini-
tialization to represent P potential instances of n-th seman-
tics. Next, in each iteration, the difference with standard slot
attention is denoted in red in Fig. 1(b). We use the seman-
tic masks computed in the first stage as reference to only
preserve the visual contents related to n-th semantics and
filter out unrelated spatial areas. We use this masked slot at-
tention weight to aggregate value features and update the
slots. Finally, for each semantics, it outputs instance masks
of size RP×HW as well as instance representations of size
RP×D. Aggregating all N semantics, we obtain N × P in-
stances in total with individual segmentation masks of size
RHW and representations of size RD.

2. More Experimental Results

Marginal Distribution in Optimal Transport. In Ta-
ble 1, we delve into the detailed formulation of the opti-
mal transport, Eq 1, to determine patch correspondence. In
default, we use the uniform distribution as the marginal dis-
tribution following [3, 4]. We compare using two forms of
semantic prior: class-agnostic activation map (CAAM) [2]
as well as the attention between cls token and other spa-
tial feature tokens on ViT backbone as the marginal distri-
bution to assign larger importance weights to foreground
areas. The performance improvement on both single and
multiple object discovery demonstrates that such semantic
guidance enables the model to lay more emphasis on object
areas and enhances object-centric representations.

Number P IoU J&F
1 66.4 24.5
2 69.3 35.4
3 71.1 39.9
4 71.8 40.5
5 71.5 40.4

Table 2. Ablation studies on the number of potential instances P .
We vary the number from 1 to 5, and report the results on sin-
gle object benchmark DAVIS-2016 and multiple object benchmark
DAVIS-2017-Unsupervised.

Number of Potential Instances. In Table 2, we com-
pare different number of potential instances P in the sec-
ond slot stage for instance discrimination. When P = 1,
our formulation degenerates into semantic slot attention
which only decomposes semantics without discriminating
instances. Hence, it performs much worse on multiple ob-
ject discovery benchmark but achieves comparable results
on single object cases. When we increase P , the perfor-
mance slightly improves then maintains stable. It demon-
strates that our method is generally robust to this hyper-
parameter.

And another interesting phenomenon of slot attention is
that in inference, it is feasible to sample different number
of slots to generalize to various scenes with distinct number
of objects [5]. And our method also maintains this attribute
as validated in Fig. 2. We show the qualitative comparison
of using different number of slots in training and inference.
We observe that when the number of objects is larger than
the number P defined in training, it is practical to sample
more slots in inference to discriminate distinct instances.
Specifically, for the model trained with P = 3, we respec-
tively sample P = 3, 4, 5 slots in inference on the gold-fish
sequence where there are five different fishes in the scene.
When the sampled number is lower than the object number,
there are instances grouped together which are discovered
by the same slot. When we increase the number of sam-
pled slots in inference, our model gradually improves the
granularity of instance identification, with the red box high-
lighting the changing area.

Temporal Correspondence Sampling. Recall that in
Sec. 3.1 in main submission, for timestamp t, we randomly
sample one temporal index j ̸= t to calculate the tempo-
ral correspondence map Ctj . Here, we conduct ablation
studies on sampling different number of temporal indexes
in Table 3. Specifically, we design a baseline where for
timestamp t, we sample t-th frame itself to calculate the
correspondence map. In this way, the calculated Ctt is
equivalent to self-correlation with no temporal cues, and the
performance significant drops especially on multiple object
discovery. It is consistent with our intuition that temporal



3 slots 4 slots 5 slotsInput

Figure 2. Different number of instance slots P in inference. We use P = 3 in training, and visualize the results of P = 3, 4, 5 in inference
on the gold-fish sequence. The red box denotes the major changing area with various P in inference.
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Figure 3. Comparison of semantic decomposition map. We respectively present our method with and without the second instance-level slot
attention stage in training in the first and second row. We use white boxes to highlight the difference area.

Sampling Number IoU J&F
Self 1 67.1 24.3

Other 1 71.8 40.5
Other 2 71.7 40.8
Other 3 71.8 40.7

Table 3. Ablation studies on the sampling strategy in temporal cor-
respondence calculation. ‘Self’ denotes for each frame, we calcu-
late the self-correlation as the correspondence map. ‘Other’ means
sampling other frames to calculate correspondence. We report the
results on single object benchmark DAVIS-2016 and multiple ob-
ject benchmark DAVIS-2017-Unsupervised.

correspondence cues contribute to identifying different in-
stances of the same semantics. And for sampling different
frames to calculate correspondence, we compare sampling
different number of frames within the input clip. When we
sample multiple frames, we respectively calculate the corre-
spondence of each pair and make an average as the final cor-
respondence representation. For example, we sample two
indexes i ̸= t and j ̸= t, we take the average Cti+Ctj

2 to
fuse with semantic feature map. We observe that sampling
more frames could slightly facilitate multiple object discov-
ery due to more abundant temporal information. But gen-
erally, sampling one temporal index is sufficient to provide
the temporal correspondence cue to supplement semantic
feature and assist instance identification.

3. More Qualitative Results

Semantic Decomposition Map. We compare the seman-
tic decomposition map with two different training formula-
tions in Fig. 3. For more straightforward comparison, we
visualize the soft masks without binarization to exclude the
impact of threshold. In the first row, we present the seman-
tic decomposition results of our method. In the second row,
we show the results of our method with only first slot atten-
tion stage in training, i.e., no instance-level discrimination
and alignment is considered. We observe that though the re-
sults are both generated by the first semantic slot attention
stage, the instance-level understanding in training could fa-
cilitate semantic understanding. For example, the instance-
level understanding helps to generate more precise and clear
borders of the person and motorbike, and improves the ob-
ject part awareness when dealing with the occluded car and
dog.

Instance Discrimination Map. We also present more vi-
sualization results on the final instance-level segmentation
maps in Fig. 4. In the first row, we show the instance dis-
covery results of our method. In the second row, we present
the results of our method without masked feature aggrega-
tion in the second slot attention stage. From the compari-
son, it echos with our motivation that the semantic mask as
a prior reference could enforce the instance slots to concen-
trate on specific semantic areas and improve the instance
discrimination results. For example, the masked feature ag-
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Figure 4. Comparison of instance identification map. We respectively present our method with and without the masked aggregation in the
slot attention stage in the first and second row. We use white boxes to highlight the difference area.

gregation suppresses the distracting background areas of the
fence, and leads to clearer borders that discriminate differ-
ence person or fish instances.

Figure 5. The iterative evolving of slot attention. We present an
example on the dog, and show 3 iterations of the slot attention
map.

Iterative Evolving of Slot Attention Map. We also give
an example on iterative evolving of the learned slots in
Fig. 5. We observe that the slots first attend to the parts
with most salient attributes, e.g., legs, then gradually ex-
pand to the whole object. It demonstrates the necessity of
using iterative slot attention for comprehensive object dis-
covery, preventing the model from only localizing object
parts.
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