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1. Theoretical Analysis
1.1. Proof of Proposition 1

Proof. Suppose for contradiction that there are K − b − 1
clusters without any positive instances. Then, b+1 clusters
have positive instances. Since a positive instance cannot be
shared by different clusters, the total number of instances is
no less than b+1, which contradicts the batch size of b.

1.2. Proof of Proposition 2
Proof. Assuming that each cluster has the same number of
instances and µi = E[xi], we have

Varpos = Exi [∥xi − µi∥22] = 1− ∥µi∥22 = 1− a2

Varneg = Exj [∥xj −
1

K − 1

K−1∑
j

µj∥22] = 1− ∥ 1

K − 1

K−1∑
j

µj∥22

If assuming a uniform distribution of centers such that
Eµ[µ] = 0, we have ∥ 1

K−1

∑K−1
j µj∥22 = a2

K−1 and
Varneg = 1 − a2/(K − 1). Therefore Varneg =
( K−2
(K−1)(1−a2) +

1
K−1 )Varpos.

1.3. Proof of Theorem 1

Proof. When fixing xi and {yi}, the optimization problem
for centers can be written as

min
{wj}

∑
i

log(exp(x⊤
i wyi/λ) +

∑
k:k ̸=yi

exp(x⊤
i w̃k/λ))

− x⊤
i wyi

/λ

Since xi and wj have the unit length, the problem is equiv-
alent to

min
{wj}

∑
i

log(exp(−∥xi −wyi∥22/2λ)

+
∑

k:k ̸=yi

exp(−∥xi − w̃k∥22/2λ)) + ∥xi −wyi
∥22/2λ

(1)

We can obtain the solution by letting the gradient of w be 0.
Nevertheless, we will introduce an alternating method for
better demonstration.

By introducing an auxiliary variable qi as the distribution
over centers, the problem can be further written as

min
{wj}

∑
i

max
qi∈∆′

−qi,yi
∥xi −wyi

∥22/2λ (2)

+
∑

k:k ̸=yi

−qi,k∥xi − w̃k∥22/2λ+H(qi) + ∥xi −wyi
∥22/2λ

where H(qi) = −
∑

j qi,j log(qi,j) measures the entropy of

the distribution and ∆′ = {qi|
∑K

j=1 qi,j = 1,∀j, qi,j ≥ 0}.
We note that qi has the closed-form solution according to
the K.K.T. condition [1] as

qi,j =
exp(x⊤

i wj/λ)∑K
k exp(x⊤

i wk/λ)
= pi,j (3)

Taking it back to the problem and letting the gradient for
centers be 0, the optimal solution w∗ should satisfy the
property

wj =

∑
i:yi=j(1− pi,j)xi∑

i:yi=j 1− pi,j

With the unit length constraint and K.K.T. condition [1], it
will be projected as

wj = Π∥w∥2=1(

∑
i:yi=j(1− pi,j)xi∑

i:yi=j 1− pi,j
) (4)

Now, we demonstrate the effect of the closed-form solu-
tion. Let L(w) denote the objective in Eqn. 1 and we have

∇L(w) = w −
∑

i:yi=j(1− pi,j)xi∑
i:yi=j 1− pi,j

According to gradient descent (GD), centers can be updated
as

wt = Π∥w∥2=1(w
t−1 − ηw∇L(wt−1))



The target solution can be obtained by setting ηw = 1.
Therefore, the closed-form solution can be considered as
the vanilla gradient descent with the constant learning rate
of 1, which suggests a constant learning rate for cluster cen-
ters.

2. SeCu with Upper-bound Size Constraint
We introduce the upper-bound size constraint for the

completeness, while the lower-bound constraint is sufficient
in our experiments. With the additional upper-bound size
constraint, the objective for SeCu becomes

min
θf ,{wj},yi∈∆

N∑
i=1

K∑
j=1

ℓSeCu(xi, yi)

s.t.
∑
i

yi,j ≥ γN/K, j = 1, . . . ,K∑
i

yi,j ≤ γ′N/K, j = 1, . . . ,K

Compared with the variant containing the lower-bound
constraint, the difference is from the updating for cluster
assignments.

When fixing xi and cluster centers {wj}, cluster assign-
ments will be updated by solving an assignment problem
as

min
yi∈∆

N∑
i=1

K∑
j=1

−yi,j log(pi,j)

s.t.
∑
i

yi,j ≥ γN/K, j = 1, . . . ,K∑
i

yi,j ≤ γ′N/K, j = 1, . . . ,K

We extend the dual-based method in [3] to update labels
in an online manner. Let ρj and ρ′j denote dual variables for
the j-th lower-bound and upper-bound constraints, respec-
tively. When a mini-batch of b examples arrive at the r-th
iteration of the t-th epoch, the cluster assignments for in-
stances in the mini-batch can be obtained via a closed-form
solution as

yti,j =

{
1 j = argminj − log(pi,j)− ρr−1

j + ρ′
r−1
j

0 o.w.

After that, the dual variables will be updated as

ρrj = max(0, ρr−1
j − ηρ

1

b

b∑
s=1

(yts,j − γ/K))

ρ′
r
j = max(0, ρ′

r−1
j + ηρ

1

b

b∑
s=1

(yts,j − γ′/K))

where ηρ is the learning rate of dual variables. Without dual
variables, the online assignment is degenerated to a greedy
strategy. Intuitively, dual variables keep the information
of past assignments and help adjust the current assignment
adaptively to satisfy the global constraint.

3. Experiments

3.1. More Implementation Details

Experiments on STL-10 Unlike CIFAR, STL-10 has an
additional noisy data set for unsupervised learning. There-
fore, the temperature for optimizing cluster centers is in-
creased to 1 to learn from the noisy data, while that for
representation learning remains the same. Moreover, the
weight of the entropy constraint is increased to 26, 460 for
the first stage training. It is reduced to 600 in the second
stage according to the proposed scaling rule, when only
clean training set is used. Finally, for the second stage,
only the target clustering head is kept for training and the
learning rate for the encoder network is reduced from 0.2 to
0.002 for fine-tuning. Other parameters except the number
of epochs are the same as the first stage. The number of
training epochs for the first and the second stage is 800 and
100, respectively.

Experiments on ImageNet We reuse the settings in [3]
for our method while searching the optimal parameters may
further improve the performance. Concretely, the model
is optimized by LARS [4] with 1, 000 epochs, where the
weight decay is 10−6, the momentum is 0.9 and the batch
size is 1, 024. The learning rate for the encoder network is
1.6 with the cosine decay and 10-epoch warm-up. The ratio
in the lower-bound size constraint and the learning rate of
dual variables are set to be 0.4 and 20, respectively. The
learning rate for cluster centers is fixed as 4.2.

Self-labeling Self-labeling is to fine-tune the model by
optimizing the strong augmentation with pseudo labels
from the weak augmentation, where the strong augmenta-
tion here is still much milder than that for pre-training. For
a fair comparison, the same weak and strong augmentations
as in [2] are applied for SeCu. Besides, SGD is adopted
for self-labeling with 100 epochs on small data sets and 11
epochs on ImageNet. The batch size is 1, 024 and momen-
tum is 0.9, which are the same as [2]. Before selecting the
confident instances by the prediction from the weak aug-
mentation with a threshold of 0.9, we have a warm-up pe-
riod with 10 epochs, where all instances are trained with the
fixed pseudo label from the assignment of pre-trained SeCu.



3.2. Ablation Study

3.2.1 Effect of Output Dimension

Given the 2-layer MLP head, we investigate the ef-
fect of the output dimension by varying the value in
{64, 128, 256, 512}. Table 1 shows the performance of dif-
ferent dimensions.

Output Dim ACC NMI ARI
64 88.0 79.3 77.4
128 88.1 79.4 77.6
256 88.2 79.3 77.5
512 87.8 79.0 77.2

Table 1: Comparison of the output dimension by the MLP
head.

We can observe that the performance is quite stable
with a small number of features. It is because that a low-
dimensional space can capture the similarity with the stan-
dard distance metric better than a high-dimensional space.
We will keep the output dimension as 128, which is the
same as the existing work [5].

3.2.2 Effect of γ in Size Constraint

Now we study the effect of the size constraint in SeCu and
Table 2 shows the performance with different lower-bound
ratio γ.

γ #Max #Min ACC NMI ARI
1 5,015 4,973 85.4 76.2 73.0
0.9 5,190 4,556 88.1 79.4 77.6
0.8 5,323 4,422 87.6 78.7 76.6
0.7 5,721 3,789 86.6 77.7 75.1

Table 2: Comparison of γ for SeCu-Size on CIFAR-10.

The same phenomenon as the entropy constraint can be
observed. When γ = 1, it implies a well-balanced clus-
tering that each cluster contains the similar number of in-
stances. Although the constraint can be satisfied with the
dual-based updating, the performance degenerates due to
the strong regularization for a balanced cluster assignment.
By reducing γ to 0.9, the assignment is more flexible, which
leads to a better pseudo label for representation learning.
The assignment becomes more imbalanced if further de-
creasing γ. Therefore, we fix γ = 0.9 for small data sets.

3.2.3 Effect of Batch Size

SeCu inherits the property of supervised discrimination
that is insensitive to the batch size. We vary it in

{32, 64, 128, 256} and show the ACC of SeCu-Size on
CIFAR-10 in Table 3, which confirms its efficacy.

Batch Size 32 64 128 256
ACC(%) 87.9 88.3 88.1 87.9

Table 3: Comparison of batch size for SeCu-Size on
CIFAR-10.
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