Supplementary Material

A. More details of HM3D-DUET

HM3D-DUET [1] is a dual-scale graph transformer with topological maps, which contains two modules: topological mapping and global action planning. The topological mapping module builds a topological map during navigation. And the global action planning module predicts the next location on the map or a stop action to end the navigation.

A.1. Topological Mapping

To build the environment graph \mathcal{G} which is unknown initially, the mapping module updates node representations by adding the newly observed location gradually to the map. Specifically, the map denote as $\mathcal{G}_t = \{\mathcal{V}_t, \mathcal{E}_t\}$. At time step t, the current node V_t and its neighboring unvisited nodes $\mathcal{N}(V_t)$ are added to \mathcal{V}_{t-1} .

The mapping module outputs the current panorama encoding with image features $\{r_i\}_{i=1}^n$ and object features $\{o_i\}_{i=1}^m$ and a graph with K node features $\{v_i\}_{i=1}^K$.

A.2. Global Action Planning

Dual-scale Cross-modal Encoder The module uses dual-scale architecture transformers to capture cross-modal vision-and-language relations from different scales: a finescale representation of the current location and a coarsescale representation of the map.

In the coarse-scale cross-modal encoder, the inputs are map node features $\{v_i\}_{i=1}^K$ and textual features \mathcal{T} . The node features are embedded and combined with word embeddings into a multi-layer graph-aware cross-modal transformer to get node embedding \hat{v}_i . Then the node embedding \hat{v}_i is fed into a two-layer feed-forward network (FFN) to predict a navigation score for each node s_i^c .

In the fine-scale cross-modal encoder, the inputs are finegrained visual representations $\{\mathcal{R}_t, \mathcal{O}_t\}$, the textual features \mathcal{T} , and a special stop token r_0 . Then the concatenated visual tokens $[r_0; \mathcal{R}_t; \mathcal{O}_t]$ and textual features \mathcal{T} are fed into a standard multi-layer cross-modal transformer to get $[\hat{r}_0; \hat{R}_t; \hat{O}_t]$. The navigation score for local-level s_i^f and object are predicted via FFN, a similar way in the coarse-scale cross-modal encoder.

Finally, the coarse-scale prediction s_i^c and fine-scale prediction s_i^f are dynamically fused to obtain the final naviga-

Algorithm 1 March in Chat

Notation Summary:

I: high-level instruction in REVERIE \mathcal{R}_t : visual observation at timestep t \mathcal{D} : demonstration set P_\circ : prompt for LLM to generate planning LLM: large language model

Template: templates to generate natural language description

 $t \leftarrow 0$ ⊳ Initial timestep $W_I \leftarrow I$ $\hat{o} \leftarrow \text{LLM}(I, P_{o})$ ▷ Target object recognition $\hat{l} \leftarrow \text{LLM}(\hat{o}, P_1)$ ▷ Target location reasoning $W_G \leftarrow \text{Template}(\hat{o}, \hat{l})$ \triangleright GOSP $W_S \leftarrow \phi$ $W \leftarrow \text{Concat}(W_I, W_G, W_S)$ ▷ Assembled instruction $P_{\text{demon}} \leftarrow \text{DynamicSelect}(I, \mathcal{D})$ ▷ Dynamic demonstration while t < max-step and $\hat{a}_t \neq \text{``stop''}$ do $\hat{c}_{\text{room}}^{t}, \hat{c}_{\text{obj}}^{t} \leftarrow \text{CLIP}(\mathcal{R}_{t})$ if $\hat{c}_{\text{room}}^{t} \neq \hat{c}_{\text{room}}^{t-1}$ then ▷ ROASP $P_{\text{scene}} \leftarrow \text{Template}(\hat{c}_{\text{room}}^t, \hat{c}_{\text{obj}}^t)$ $P_{\text{step}} \leftarrow \text{Template}(I, W_S)$ $P_{\text{SODP}} \leftarrow \text{Concat}(P_{\text{scene}}, P_{\text{demon}}, P_{\text{step}})$ $I_{\text{step}} \leftarrow \text{LLM}(P_{\text{SODP}})$ \triangleright SODP W_S .Append (I_{step}) $W.Update(W_S)$ ▷ Instruction update end if $\hat{a}_t \leftarrow \operatorname{Agent}(W, \mathcal{R}_t)$ $t \leftarrow t + 1$ end while

tion prediction s_i .

B. Algorithm of MiC

The algorithm of MiC pipeline is described in Algorithm 1.

C. More Qualitative Results

We provide more examples of generated instructions in Fig. 1. And Fig. 2 shows the screenshot of the user interfaces for human study.

D. Discussion of HANNA

HANNA [2] defines a task in an interactive setup. It builds a simulator to let the agent requests assistance for

REVERIE Instruction: Rearrange the sofa in the office.		
Scene-Oriented Dynamic Planning	w/o Dynamic Demonstration	w/o ROASP
Step 1: go down the stair in front of you Step 2: once at the bottom enter the door Step 3: stop once you enter the room Step 4: rotate the sofa in the office	Step 1: select the object you want to rearrange.	Step 1: go up the stairs and into the office Step 2: when you get there, turn left Step 3: when you get back to the top of the stairs
REVERIE Instruction: Dust off the picture in t	he lobby	
Scene-Oriented Dynamic Planning	w/o Dynamic Demonstration	w/o ROASP
Step 1: go into the lobby Step 2: find the target picture Step 3: dry the back of the picture	Step 1: go to the lobby and click on the picture	Step 1 go to the stairs and up them Step 2: go through the doorway on the right side Step 3: go back to the staircase Step 4: go through the doorway on the left side
REVERIE Instruction: Open the bathroom wir	dow.	
Scene-Oriented Dynamic Planning	w/o Dynamic Demonstration	w/o ROASP
Step 1: enter the bathroom through the open	Step 1: go into the bathroom and open the door	Step 1: go inside the bathroom Step 2: walk towards the mirror
Step 2: walk straight Step 3: stand next to the toilet		Step 3: look at yourself in the mirror Step 4: then close the door Step 5: walk back outside
Step 2: walk straight Step 3: stand next to the toilet REVERIE Instruction: Go to the family room a	and clean the end table.	Step 3: look at yourself in the mirror Step 4: then close the door Step 5: walk back outside
Step 2: walk straight Step 3: stand next to the toilet REVERIE Instruction: Go to the family room a Scene-Oriented Dynamic Planning	and clean the end table. w/o Dynamic Demonstration	Step 3: look at yourself in the mirror Step 4: then close the door Step 5: walk back outside w/o ROASP

Figure 1: Examples of generated instructions.

navigation. However, the agent just sends a signal for help when it got lost, without environmental feedback. What's more, the assistance provided by HANNA is ground truth information, which is not applicable in real-world scenarios. While in MiC, the agent could give environmental feedback in natural language, and the off-the-shelf LLM planner would correspondingly generate step-by-step instructions.

References

- Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Learning from unlabeled 3d environments for vision-and-language navigation. In ECCV, 2022. 1
- [2] Khanh Nguyen and Hal Daumé III. Help, anna! visual navigation with natural multimodal assistance via retrospective curiosity-encouraging imitation learning. pages 684–695. Association for Computational Linguistics, 2019. 1

Human Evaluation

For every question below, please rate the generated step-by-step insructions from the following two aspects.

d empt; the bin ge ∂ door garba[e can
Rationaity
0 0
0 1
O 2
O 3
Your raing for the rationality is 2 .

Figure 2: Screenshot of the user interfaces for our human study.