
Supplementary Material

A. More details of HM3D-DUET
HM3D-DUET [1] is a dual-scale graph transformer with

topological maps, which contains two modules: topologi-

cal mapping and global action planning. The topological

mapping module builds a topological map during naviga-

tion. And the global action planning module predicts the

next location on the map or a stop action to end the naviga-

tion.

A.1. Topological Mapping

To build the environment graph G which is unknown ini-

tially, the mapping module updates node representations by

adding the newly observed location gradually to the map.

Specifically, the map denote as Gt “ tVt, Etu. At time step

t, the current node Vt and its neighboring unvisited nodes

N pVtq are added to Vt´1.

The mapping module outputs the current panorama en-

coding with image features triuni“1 and object features

toiumi“1 and a graph with K node features tviuKi“1.

A.2. Global Action Planning

Dual-scale Cross-modal Encoder The module uses

dual-scale architecture transformers to capture cross-modal

vision-and-language relations from different scales: a fine-

scale representation of the current location and a coarse-

scale representation of the map.

In the coarse-scale cross-modal encoder, the inputs are

map node features tviuKi“1 and textual features T . The

node features are embedded and combined with word em-

beddings into a multi-layer graph-aware cross-modal trans-

former to get node embedding pvi. Then the node embed-

ding pvi is fed into a two-layer feed-forward network (FFN)

to predict a navigation score for each node sci .

In the fine-scale cross-modal encoder, the inputs are fine-

grained visual representations tRt,Otu, the textual features

T , and a special stop token r0. Then the concatenated

visual tokens rr0;Rt;Ots and textual features T are fed

into a standard multi-layer cross-modal transformer to get

r pr0; pRt; pOts. The navigation score for local-level sfi and ob-

ject are predicted via FFN, a similar way in the coarse-scale

cross-modal encoder.

Finally, the coarse-scale prediction sci and fine-scale pre-

diction sfi are dynamically fused to obtain the final naviga-

Algorithm 1 March in Chat

Notation Summary:
I: high-level instruction in REVERIE

Rt: visual observation at timestep t
D: demonstration set

P˝: prompt for LLM to generate planning

LLM: large language model

Template: templates to generate natural language description

t Ð 0 Ź Initial timestep

WI Ð I
ô Ð LLMpI, Poq Ź Target object recognition

l̂ Ð LLMpô, Plq Ź Target location reasoning

WG Ð Templatepô, l̂q Ź GOSP

WS Ð φ
W Ð ConcatpWI ,WG,WSq Ź Assembled instruction

Pdemon Ð DynamicSelectpI,Dq Ź Dynamic demonstration

while t <max-step and ât ‰ “stop” do
ĉtroom, ĉ

t
obj Ð CLIPpRtq Ź ROASP

if ĉtroom ‰ ĉt´1
room then

Pscene Ð Templatepĉtroom, ĉ
t
objq

Pstep Ð TemplatepI,WSq
PSODP Ð ConcatpPscene, Pdemon, Pstepq
Istep Ð LLMpPSODPq Ź SODP

WS .AppendpIstepq
W.UpdatepWSq Ź Instruction update

end if
ât Ð AgentpW,Rtq
t Ð t ` 1

end while

tion prediction si.

B. Algorithm of MiC
The algorithm of MiC pipeline is described in Algo-

rithm 1.

C. More Qualitative Results
We provide more examples of generated instructions in

Fig. 1. And Fig. 2 shows the screenshot of the user inter-

faces for human study.

D. Discussion of HANNA
HANNA [2] defines a task in an interactive setup. It

builds a simulator to let the agent requests assistance for



w/o Dynamic Demonstration w/o ROASPScene-Oriented Dynamic Planning

REVERIE Instruction: Dust off the picture in the lobby

Step 1: go into the lobby
Step 2: find the target picture
Step 3: dry the back of the picture

Step 1: go to the lobby and click on the 
picture

Step 1 go to the stairs and up them
Step 2: go through the doorway on the right side
Step 3: go back to the staircase
Step 4: go through the doorway on the left side

w/o Dynamic Demonstration w/o ROASPScene-Oriented Dynamic Planning

Step 1: enter the bathroom through the open 
door
Step 2: walk straight
Step 3: stand next to the toilet

Step 1: go into the bathroom and open 
the door

Step 1: go inside the bathroom
Step 2: walk towards the mirror
Step 3: look at yourself in the mirror
Step 4: then close the door
Step 5: walk back outside

REVERIE Instruction: Go to the family room and clean the end table.

Step 1: walk to the family room
Step 2: walk to the end table
Step 3: wait right by table.

Step 1: clean the end table with a damp 
cloth
Step 2: wipe down the floor with a damp 
cloth

Step 1: walk towards the fireplace
Step 2: and then go straight into the room on 
the right
Step 3: wait near the table and chair
Step 4: go back to the kitchen
Step 5: then go to the dining room

w/o Dynamic Demonstration w/o ROASPScene-Oriented Dynamic Planning

REVERIE Instruction: Open the bathroom window.

REVERIE Instruction: Rearrange the sofa in the office.

Step 1: go down the stair in front of you
Step 2: once at the bottom enter the door
Step 3: stop once you enter the room
Step 4: rotate the sofa in the office

Step 1: select the object you want to 
rearrange.

Step 1: go up the stairs and into the office
Step 2: when you get there, turn left
Step 3: when you get back to the top of the 
stairs

w/o Dynamic Demonstration w/o ROASPScene-Oriented Dynamic Planning

Figure 1: Examples of generated instructions.

navigation. However, the agent just sends a signal for help

when it got lost, without environmental feedback. What’s

more, the assistance provided by HANNA is ground truth

information, which is not applicable in real-world scenar-

ios. While in MiC, the agent could give environmental feed-

back in natural language, and the off-the-shelf LLM planner

would correspondingly generate step-by-step instructions.
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