
Supplementary Material

A. Statistics of Datasets
Table 1 shows the statistical details of datasets used for

the downstream VLN tasks. #Path represents the number of
paths, #Instr represents the number of instructions, #Words
represents the number of words, and Instr Length denotes
the average lengths of instructions.

B. Comparison of Memory Consumption
We conduct experiments on the R2R val set to evaluate

the efficiency on memory consumption of different PETL
methods. We also report the results of Head-Tuning that
only tunes the prediction head and Ladder Side Tuning
(LST) [9] which is claimed to effectively reduce the mem-
ory consumption. We find that though some PETL methods
(BitFit, Prompt Tuning, LoRA, Adapter and VLN-PETL)
tune different amounts of parameters, their memory con-
sumption is similar (about 70% compared to fine-tuning)
due to the full back-propagation from outputs to inputs, in
correspondence with the findings of [9]). Compared to
LoRA and Adapter, our VLN-PETL improves the perfor-
mance by a large margin without increasing much more
memory consumption, demonstrating the effectiveness of
our proposed VLN-PETL.

We also find that LST, which reduces about 65%
memory, has a better performance than Head-Tuning and
Prompt-Tuning while worse than BitFit. We infer that the
larger pre-trained model in LST works more like a feature
extractor, where the output feature of each transformer layer
is fixed and used as the input of the side blocks, which could
effectively reduce the memory but hurt the performance by
failing in adapting the dynamic knowledge flow through the
frozen pre-trained model.

Thus, how to further reduce memory consumption while
keeping competitive performance will be another focus of
our future work.

C. Details of Language Encoder Adapter
For brevity, we omit the details of Language Encoder

Adapter (LEA) in the main paper. Now, we will give a de-
tailed description as follows.

Concretely, for the l-th transformer block in the language
encoder, the input feature f l´1

x is first passed through an

Dataset #Path #Instr #Words Instr Length

R2R [1] 7K 21.7K 625K 29
REVERIE [8] 7K 21.7K 388K 18
CVDN [10] 7K 2.1K: 167K -
RxR [6] 16.5K 126.1K 9.8M 78
:The number of dialogues.

Table 1: Statistics of datasets for the four VLN tasks.

Methods Memory Updated Validation Seen Validation Unseen
(GB) Params(%) SR Ò SPL Ò SR Ò SPL Ò

Fine-Tuning 17.4 100 72.67 69.17 64.24 59.25

Head-Tuning 2.0 0.35 61.21 57.97 56.02 52.00
LST [9] 6.1 2.25 63.17 59.48 57.85 53.00
BitFit [2] 12.0 0.46 63.47 60.35 59.17 54.67
Prompt-Tuning [7] 12.3 0.37 61.02 58.59 56.49 52.32
LoRA [5] 12.7 3.02 70.13 66.00 63.60 57.59
Adapter [4] 12.7 3.08 67.38 64.42 63.01 57.42

VLN-PETL(ours) 13.2 2.82 72.28 68.50 65.47 60.01

Table 2: Comparison of memory consumption on R2R Val
set.

adapter with Dmid bottleneck dimension to generate a new
feature fad_att. Then, fad_att is summed with the original
output feature f̂att of the multi-head self-attention layer in
the transformer block as:

fad_att “ W ⊺
up_attReLUpW ⊺

down_attf
l´1
x q, (1)

f̂att “ MSApf l´1
x q, (2)

fatt “ LNpf̂att ` fad_attq, (3)

where Wup_att and Wdown_att represent projection matrices
of the adapter, MSAp¨q represents multi-head self-attention
layer and LNp¨q represents layer normalization. Note that
we omit the feed-forward layer following multi-head self-
attention layer for brevity.

Similarly, another adapter is inserted into the feed-
forward layer which takes fatt as input:

fad_ffn “ W ⊺
up_ffnReLUpW ⊺

down_ffnfattq, (4)

f̂ffn “ FFNpfattq, (5)

fffn “ LNpf̂ffn ` fad_ffnq, (6)

where FFNp¨q represents feed-forward layer. Finally, fffn is
used as the output feature f l

x of the l-th transformer block:
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Figure 1: Variant of VLN baseline for RxR.

G G
𝝈𝝈 𝝈𝝈MHA MHATRM

𝐖𝐖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐖𝐖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝

𝒇𝒇𝒙𝒙𝒍𝒍−𝟏𝟏 𝒇𝒇𝒗𝒗𝒍𝒍−𝟏𝟏

𝒇𝒇𝒙𝒙𝒍𝒍 𝒇𝒇𝒗𝒗𝒍𝒍

𝐖𝐖𝐮𝐮𝐮𝐮 𝐖𝐖𝐮𝐮𝐮𝐮

G
𝝈𝝈 𝝈𝝈 MHATRM

𝐖𝐖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐖𝐖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝

𝒇𝒇𝒙𝒙𝒍𝒍−𝟏𝟏 𝒇𝒇𝒗𝒗𝒍𝒍−𝟏𝟏

𝒇𝒇𝒙𝒙𝒍𝒍 𝒇𝒇𝒗𝒗𝒍𝒍

𝐖𝐖𝐮𝐮𝐮𝐮 𝐖𝐖𝐮𝐮𝐮𝐮

Figure 2: Variant of Cross-modal Interaction Booster for
RxR.

f l
x “ fffn. (7)

D. Variant of VLN-PETL for RxR

To improve the efficiency of HAMT for VLN tasks with
much longer instructions such as RxR, [3] adopts a struc-
ture variant for cross-modal encoder as shown in Figure 1.
We follow this practice for our VLN baseline in the RxR
task and correspondingly our proposed cross-modal Interac-
tion Booster (CIB) also has a modification for the language
sub-branch as shown in Figure 2. Specifically, for the lan-
guage input feature f l´1

x , only a bottleneck layer with an
activation layer works as a block-level adapter, excluding
the multi-head cross-attention mechanism and gating mech-
anism. The forward pass of this variant can be formulated
as follows:

f l
x “ LN

`

TRMpf l´1
x q ` ADAPTERpf l´1

x q
˘

. (8)

E. Qualitative Examples

The visualized trajectories depicted in Figure 3 show that
upon removing the CIB module, the agent failed to reach the
target location.

(a) Predicted trajectory by VLN-PETL (succeed).

(b) Predicted trajectory by VLN-PETL w/o CIB (failed).

Figure 3: Comparisons of predicted trajectory with VLN-
PETL and VLN-PETL w/o CIB module. The navigation
steps inside the red box are incorrect. Instruction:" Turn
right to head down the hallway. Go to the end of the hallway
and turn into the last bedroom on the left. Stop once in the
door. "

References

[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian D. Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In CVPR, pages 3674–3683, 2018. 1

[2] Elad Ben-Zaken, Shauli Ravfogel, and Yoav Goldberg. Bit-
fit: Simple parameter-efficient fine-tuning for transformer-
based masked language-models. ArXiv, abs/2106.10199,
2022. 1

[3] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and
Ivan Laptev. History aware multimodal transformer for
vision-and-language navigation. In NeurIPS, pages 5834–
5847, 2021. 2

[4] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, pages 2790–2799, 2019. 1

[5] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Lu Wang, and Weizhu Chen. Lora: Low-rank
adaptation of large language models. In ICLR, 2022. 1

[6] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and
Jason Baldridge. Room-across-room: Multilingual vision-
and-language navigation with dense spatiotemporal ground-
ing. In EMNLP, pages 4392–4412, 2020. 1

[7] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In EMNLP,
pages 3045–3059, 2021. 1

[8] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton van den
Hengel. REVERIE: remote embodied visual referring ex-
pression in real indoor environments. In CVPR, pages 9979–
9988, 2020. 1



[9] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. LST: lad-
der side-tuning for parameter and memory efficient transfer
learning. CoRR, abs/2206.06522, 2022. 1

[10] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke
Zettlemoyer. Vision-and-dialog navigation. In CoRL, pages
394–406, 2019. 1


