
Appendix

A. Details of GlueNet
The key contribution of this paper is GlueNet, which addresses both cross-model alignment and feature protection. In this

section, we will provide more details about GlueNet, including its implementation and configuration, an analysis of its sizes,
and other ablation studies.

A.1. Architecture and Configuration
In Section 4.2 of the main paper, we introduced the basic architecture of GlueNet. Different sizes of GlueNet are available,

and their configurations are detailed in Table 4. The GlueNet with three residual modules is the smaller variant, with 34M
parameters in its encoder, while the GlueNet-5RMs has 51M parameters. However, larger models tend to have slower speed
and higher computation costs. Moreover, there could be slight difference in the architecture for different encoders alignment.
To maintain inference speed and efficiency during the finetuning stage, the size of GlueNet, when working as an injected
module, should not exceed that of the image decoder and text encoder. Based on our empirical observations, assigning RM
as five produces satisfactory results. GlueNet-3RMs, on the other hand, appears weak in representation learning. Besides the
MLP-mixer, a self-attention-based model may also be used to implement GlueNet. In the future, we plan to explore more
suitable architectures for GlueNet.

Table 4. Model configurations for our GlueNet. We introduce two configurations of GlueNet-3RMs and GlueNet-5RMs. [LN] represent
that layer-normalization is optional in the Tail Net. DIM-OUT and TOKEN-OUT are 77 and 1024 for Stable Diffusion v1. DIM-IN and
TOKEN-IN depend on the target encoder to replace. N is assigned as 1 if TOKEN-IN is equal to TOKEN-OUT. N is larger than 1 (2 or
3) if TOKEN-IN is not equal to TOKEN-OUT.
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B. Analysis of Text Encoder Replacement
B.1. Analysis of GlueNet Sizes

Figure 13 presents a visual comparison of example prompts across three different methods. The original LDM model with
the checkpoint 6 shared in its repository is referred to as LDM Ori. Our models, GlueNet-3RMs and GlueNet-5RMs, contain
three or five residual modules within their body nets, respectively. The text encoder is replaced with T5-3B, while the image
decoder is the same as LDM Ori. Both GlueNet models are trained on the same text corpus, consisting of 18 million English
sentences. The figure shows that GlueNet-3RMs struggles with some complex prompts, such as ”a virus monster is playing
guitar, oil on canvas” and ”there is a penguin with a dog head standing,” where GlueNet-5RMs performs better. We can,
therefore, conclude that deep GlueNet is necessary for precise alignment. GlueNet-5RMs is the default configuration mostly.

6https://github.com/CompVis/latent-diffusion
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Figure 12. t-SNE [64] cross-model feature map visualization.

Table 5. Ablation study of GlueNet (T5+GlueNet+LDMUnet) over the 5K COCO subset. Finetuning is not applied in most of the cases.
Ablations s=1.5 s=5 s=7.5

loss-mse loss-rec loss-adv Finetuning CLIP" FID# CLIP" FID# CLIP" FID#
% % % % 10.70 98.17 10.75 141.19 11.00 156.70
% % % ! 18.98 35.76 22.05 49.14 22.49 53.11
! % % % 20.40 34.41 23.01 48.67 23.40 52.78
! ! % % 20.53 33.14 23.23 45.96 23.57 48.67
! ! ! % 20.67 32.80 23.24 45.48 23.74 48.51
! ! ! ! 21.14 30.93 23.88 41.92 24.17 44.58

B.2. Ablation of Losses
In order to analyze the impacts of different losses, we present their t-SNE map visualizations in Figure 12. It is evident

from the figure that using just the MSE loss is insufficient to align the features of the two models accurately. The reconstruc-
tion loss is crucial to maintain discrimination and avoid overfitting. In contrast, the adversarial loss does not seem to provide
significant improvement in the figure. Through empirical study, we found that the adversarial loss only yields limited gains.

We conducted a quantitative ablation study on a randomly selected subset of 5,000 images from COCO dataset. For
alignment, we used T5-3B as the text encoder and aligned it with LDM Unet using our GlueNet. The finetuning of Unet is
denoted by FT (Unet finetuning is only needed here). We report FID and CLIP scores in the following table for comparing
image quality and image-text alignment. The testing data is inferred by DDIM with 200 steps, and the image size is 256 ⇥
256. For a comprehensive analysis, the experiments were performed using three classifier-free guidances with s=1.5, 5, and
7.5, according to Eq. (2). Table 5 summarizes the results of our ablation study.

The first row of the table represents the direct combination of T5 and LDM, which yields nonsensical results due to severe
misalignment. The second row reports results of T5+LDM trained from scratch. The finetuning of Unet in T5+LDM took
100 GPU days, whereas GlueNet training required only 5 GPU days. However, even with ten times the cost, its results were
inferior to those of GlueNets’. By comparing the third, fourth, fifth, and sixth rows, we can easily conclude the superiority
of the full-version model.

B.3. Text Encoders Analysis
Our proposed framework is compatible with a wide range of text encoders. In this subsection, we experimented with

several language models as the text encoder, including Bert-base (110M parameters), Roberta-Large (355M parameters),
Clip-text (123M parameters), T5-large (770M parameters), and T5-3B (2.8B parameters). These pre-trained text encoders
were aligned with the Latent Diffusion Model (LDM) using our proposed model without requiring any finetuning of the LDM
UNet. These plug-and-play models were evaluated on a subset of COCO consisting of 5,000 randomly selected samples. The
FID and CLIP scores are reported in the table below for image quality and image-text alignment comparison. The GlueNets
were trained on 18 million sentences sampled from the captions of Laion-400M. The testing data were inferred using DDIM
with 200 steps, and the image size was set to 256×256. To provide a comprehensive analysis, we conducted experiments on



Table 6. Analysis of Different Text Encoders over the 5K COCO subset.

Bert-B (110M) Roberta-L (355M) CLIP-Text (123M) T5-L (770M) T5-3B (2.8B)

CLIP" FID# CLIP" FID# CLIP" FID# CLIP" FID# CLIP" FID#
s=1.5 19.42 37.46 20.03 34.06 19.02 38.93 19.78 35.17 20.67 32.80
s=5 21.97 55.35 22.85 45.88 21.85 47.32 22.76 47.91 23.24 45.48
s=7.5 22.68 55.21 23.25 48.96 22.38 49.66 23.23 50.02 23.74 48.51

Table 7. Model Transfer with variant token lengths (SrcTokenLength !TargetTokenLength) over the 5K COCO subset with the guidance
as 5. Roberta-L [31] is applied as the new text encoder to replace LDM text encoder.

77!77 128!77 256!77
CLIP" 22.85 23.19 23.37
FID# 45.88 45.67 45.53

Table 8. Analysis of GlueNet’s training cost (T5-3B ! LDM) with increasing sizes of training data. The FID and CLIP scores are computed
over 5K subset of COCO.

Data Size
5M 18M 116M

CLIP" 20.92 23.24 23.71
FID# 48.63 45.48 43.17

GPU Days# 1.67 5.89 41.20

three classifier-free guidance settings with s=1.5, 5 and 7.5. The results are summarized in Table 6. As shown in the table,
we observe that both FID and CLIP scores increase with the use of larger text models, which is consistent with the findings
reported in Imagen [48]. However, CLIP-text does not perform well in our experiments due to a larger domain gap with
text-only models like Bert.

B.4. Variant Token Lengths
GlueNet demonstrates strong ability in handling text of different lengths. The token number is fixed at 77 for both LDM

and SDM. Our proposed GlueNet can handle variable length text encoders without any finetuning of the Unet model. To
verify this, we conducted an experimental study, and the results are reported in Table 7. In this experiment, we used Roberta-
L and its tokenizers to encode text with maximum tokens of 77, 128, and 256, respectively. The guidance setting was 5, and
other experimental settings were consistent with those in Table 6.

B.5. Data Sizes
Conditional generation is a challenging task, and the alignment between the text encoder and image Unet remains an open

question. We have found empirically that replacing the text encoder can yield comparable results to the source model, but it
requires significant effort to surpass it. The bottleneck may lie in the Unet architecture. In this section, we provide precise
computations costs for different training set sizes in Table 8. The benchmark was performed on COCO-5K using T5-3B to
replace the LDM text encoder with GlueNet, consistent with previous experiments. As shown in the table, we observe that
performance increases with both the size of the training set and the computation cost.

C. Monolingual (English) Text-to-Image Generation
To demonstrate the generality of our proposed framework, we also replaced the CLIP text encoder of Stable Diffusion (v1-

4) with T5-Large. As shown in Figure 14, our model exhibits precise controllability and excellent visual quality compared
to the standard Stable Diffusion model. However, it falls short of outperforming the original Stable Diffusion model due to
minor mismatches.
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Figure 13. Monolingual generation (T5 + GlueNet + LDMUnet) of example prompts in 256 ⇥ 256 with guidance weight 7.5 and DDIM
steps 200. Both T5 and LDMUnet are pre-trained ones. We only train GlueNet with different model sizes to fulfill.



Stable Diffusion v1 T5 + GlueNet + SDUnet

“An astronaut 
riding a horse.”

“A pink car.”

“A shark in the 
dessert.”

Figure 14. Monolingual generation of example prompts in 512 ⇥ 512 with guidance weight 7.5 and 50 PLMS [30] sampling steps.



D. Multilingual Text-to-Image Generation
The additional results in Figures 19, 20, 21, 22 and 23 help to verify the multilingual text-to-image generation capabilities

of our proposed framework. Each language is associated with a dedicated GlueNet. To build an automated pipeline, the
model should be able to select the appropriate GlueNet based on the detected language.

E. Sound-to-Image Generation
We provide additional visual results in Figures 16 and 17, comparing the vanilla GlueNet (without the re-weight objective)

with the Adaptive GluNet (with the re-weight objective) as described in Section 4.3 of the main paper. These figures clearly
show that the Adaptive GluNet improves the stability and accuracy of the generated images compared to the vanilla GlueNet,
thus demonstrating the effectiveness of the objective re-weighting technique proposed in Section 4.3.

F. Multimodal-to-Image Generation
According to Section 4.3 of the main paper, the fusion of multi-modal condition features from different encoders can

be achieved through non-parametric operations, such as concatenating the top K signals and averaging the rest (excluding
the last K). More multi-modal generation results are presented in Figure 18. In our experiment, we used a text encoder
(CLIPText) to extract the text embedding (with the input of ”in painting style by Picasso”). We also inputted audio data to the
AudioCLIP model, which was appended with a GlueNet to map it into an embedding. Then, we applied the proposed feature
fusion operator, merging both text and sound embeddings, which enabled the stable diffusion model to generate reasonable
results.

We have conducted an ablation study to determine the optimal value of K for fusing multi-modal condition features using
the non-parametric operations described in Section 4.3 of the main paper. The results, which are presented in Figure 15, show
that when K <= 6, the audio signals dominate the generation process. As K increases, text signals gradually begin to appear
and eventually dominate the conditioning when K = 10. Therefore, to strike a good balance between the two cross-modal
signals, we recommend selecting an appropriate value of K based on empirical observations.



+ <text: “in paining style by Vincent van Gogh”><sound: dog barking>

K=1 K=2 K=3 K=4 K=5

K=6 K=7 K=8 K=9 K=10

Figure 15. Analysis of top K selected signals for multimodal (sound and text) feature fusion. This operation is non-parametric (also
training-free) which only needs concatenating top K token signals and averaging the rest.



Vanilla GlueNet Adaptive GlueNet
<sound: dog barking>

<sound: drilling>

<sound: street music>

Figure 16. Sound-to-image generation (Part 1/2) with vanilla and adaptive GlueNets.



Vanilla GlueNet Adaptive GlueNet
<sound: children playing>

<sound: engine idling>

<sound: gun shot>

Figure 17. Sound-to-image generation (Part 2/2) with vanilla and adaptive GlueNets.



+ <text: “in painting style by 
Vincent van Gogh”>

<sound: engine idling >

<text: “in painting
style by Picasso”>+

<sound: dog barking >

sound-only result sound-text-mix result
(a)

(b)
sound-only result sound-text-mix result

Figure 18. Multimodal-to-image generation (sound-text-mix) results. The condition encoders are ClipText and AudioCLIP+GlueNet. The
two-modality features are fused to Stable Diffusion Unet to generate such right-side result.



Des fleurs de 
bégonia dans 
un jardin

Des fruits 
jaunes sur 
un arbre

Gros plan sur 
des fleurs de 
géranium rose

Figure 19. Multilingual generation results in 512 ⇥ 512 of XLM-Roberta + GlueNet + Stable Diffusion Unet (v1-5) with the French
captions. The three results are generated with different random noises.



Acercamiento de 
árbol de limones 
amarillos

Acercamiento de 
sopa de fideos 
sobre mesa de 
madera

Estantes con 
discos de 
música 
separados por 
género

Figure 20. Multilingual generation results in 512 ⇥ 512 of XLM-Roberta + GlueNet + Stable Diffusion Unet (v1-5) with the Spanish
captions. The three results are generated with different random noises.



一块木板上
盛放着刚出
炉的圆形披
萨，上面撒
了一些绿叶

两个古董意
大利车

在山里中站着
两只鸡，一只
黄色另一只黑
黄色，它们俩
站着看向同一
个方向

Figure 21. Multilingual generation results in 512 ⇥ 512 of XLM-Roberta + GlueNet + Stable Diffusion Unet (v1-5) with the Chinese
captions. The three results are generated with different random noises.



2台のクラシッ
クなフィルムカ
メラのモノクロ
の写真

エビと野菜サ
ラダやマッ
シュポテトな
どを添えた一
皿の料理

サーバールー
ムのサーバー
機器、絡まっ
たコード

Figure 22. Multilingual generation results in 512 ⇥ 512 of XLM-Roberta + GlueNet + Stable Diffusion Unet (v1-5) with the Japanese
captions. The three results are generated with different random noises.



Auto sportive 
d'epoca in 
esposizione in un 
salone dalle mura 
bianche

Un lama su un 
prato di erba 
seccha sotto 
un cielo blu

Zuppa con 
carne, spaghetti 
e vegetali servita 
in piatto bianco

Figure 23. Multilingual generation results in 512 ⇥ 512 of XLM-Roberta + GlueNet + Stable Diffusion Unet (v1-5) with the Italian
captions. The three results are generated with different random noises.
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