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Overview
In this supplementary material, we first provide more

ablation studies, and comparison with state-of-the-art ap-
proaches on zero-shot task and video recognition task in
Sec. 1. Then, the implementation details for SSV2, K400
and EK100 are presented in Sec. 2.

1. Additional Results
1.1. Ablation Studies

Method Pretraining Frozen SSV2 K400
EVL [15] ImageNet-21k ✓ N/A 75.4

ST-Adapter [18] ImageNet-21k ✓ 62.8 76.6
TimeSformer [2] ImageNet-21k ✗ 59.5 78.0

X-ViT [3] ImageNet-21k ✗ 64.4 78.5
DiST ImageNet-21k ✓ 66.8 79.8

EVL [15] CLIP ✓ 61.0 82.9
ST-Adapter [18] CLIP ✓ 66.3 82.0

DiST CLIP ✓ 68.7 83.6

Table A1: Comparsion with state-of-the-art under different
pre-trained image encoders.

Fine-tuning with ImageNet pretrained models. In fact,
our DiST is not limited to CLIP pre-trained image mod-
els, and thus we have attempted to explore fine-tuning
video models based on ImageNet supervised pre-training
by following existing methods [15, 18]. As shown in
Tab. A1, DiST outperforms the similar frozen CLIP-based
fine-tuning method, i.e., EVL [15] by 4.4 %. Compared
to the adapter-based approach, i.e., ST-Adapter [18], we ex-
ceed by 4.0% and 2.2% on SSV2 and K400 datasets, respec-
tively. Besides, DiST also shows performance advantages
over full fine-tuning methods, such as TimeSformer [2] and
X-ViT [3]. These results indicate that DiST is a more gen-
eral network for image-to-video transfer learning.

Frame 1-4 5-8 9-12 SSV2 K400
✗ ✗ ✗ ✓ 66.0 83.0
✗ ✗ ✓ ✓ 67.8 83.3
✗ ✓ ✓ ✓ 68.0 83.4
✓ ✓ ✓ ✓ 68.7 83.6

Table A2: Different layer of features.

Different depth features. As shown in Tab. A2, if only us-
ing the deep features (i.e., 9-12) of ViT, its performance on
the temporally heavy dataset (i.e., SSV2) is weak. Never-
theless, the introduction of low-level features can bring up
to 2.8% gains at most. This implies that the rich tempo-
ral details in the lower-level features are more beneficial for
spatio-temporal learning.
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Figure A1: Performance comparison on varying training
data scales.

Data efficiency. Data efficiency refers to the utilization effi-
ciency of limited data by fine-tuning the models with only a
portion of the training data. In Fig. A1, DiST and other clip-
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Method Pre-train Architecture Input Size FLOPs×Cr.×Cl. (T) Param (M) Frozen Top-1 Top-5

SlowFast [8] ImageNet-21K R101+NL 16× 2242 0.1× 3× 1 60 ✗ 63.1 87.6
ViViT FE [1] IN21K+K400 ViT-L 16× 2242 1.0× 3× 4 612 ✗ 65.4 89.8

TAdaConvNeXt-T [10] ImageNet-1K ConvNeXt-T 32× 2242 0.1× 3× 2 38 ✗ 67.1 90.4
MTV-B(320p) [24] IN21K+K400 - 32× 2242 0.9× 3× 4 310 ✗ 68.5 90.4

MViT [7] Kinetics-600 MViT-B-24 32× 2242 0.2× 3× 1 53 ✗ 68.7 91.5
Video Swin [16] IN21K+K400 Swin-B 32× 2242 0.3× 3× 1 60 ✗ 69.6 92.7

UnifromerV2 [14] CLIP-400M ViT-B 32× 2242 0.37× 1× 3 163 ✗ 70.7 93.2
EVL❄ [15] CLIP-400M ViT-B 32× 2242 0.68× 1× 3 175 ✓ 62.4 -

ST-Adapter❄ [18] CLIP-400M ViT-B 32× 2242 0.61× 1× 3 93 ✓ 69.5 92.6
DiSTγ=2

❄ CLIP-400M ViT-B 8× 2242 0.16× 1× 3 105 ✓ 68.7 91.1
DiSTγ=2

❄ CLIP-400M ViT-B 16× 2242 0.32× 1× 3 105 ✓ 70.2 92.0
DiSTγ=2

❄ CLIP-400M ViT-B 32× 2242 0.65× 1× 3 105 ✓ 70.9 92.1

UnifromerV2 [14] CLIP-400M ViT-L 32× 2242 1.73× 1× 3 574 ✗ 73.0 94.5
TAdaFormer [11] CLIP-400M ViT-L 32× 2242 1.70× 2× 3 364 ✗ 73.6 -

EVL❄ [15] CLIP-400M ViT-L 32× 2242 3.21× 1× 3 654 ✓ 66.7 -
ST-Adapter❄ [18] CLIP-400M ViT-L 32× 2242 2.75× 1× 3 347 ✓ 72.3 93.9

DiSTγ=2
❄ CLIP-400M ViT-L 8× 2242 0.71× 1× 3 336 ✓ 70.8 92.3

DiSTγ=2
❄ CLIP-400M ViT-L 16× 2242 1.42× 1× 3 336 ✓ 72.5 93.0

DiSTγ=2
❄ CLIP-400M ViT-L 32× 2242 2.83× 1× 3 336 ✓ 73.1 93.2

EVL❄ [15] CLIP-400M ViT-L 32× 3362 8.08× 1× 3 654 ✓ 68.0 -
DiSTγ=2

❄ CLIP-400M ViT-L 8× 3362 1.66× 1× 3 336 ✓ 71.2 92.5
DiSTγ=2

❄ CLIP-400M ViT-L 16× 3362 3.32× 1× 3 336 ✓ 72.6 93.0
DiSTγ=2

❄ CLIP-400M ViT-L 32× 3362 6.64× 1× 3 336 ✓ 73.3 93.5

Table A3: Comparison with the state-of-the-art methods on Something-Something V2. “Cr.” and “Cl.” are the abbreviation
for “spatial crops” and “temporal clips”. “Frozen” indicates freezing the CLIP pre-trained parameters.

based pre-training methods [18, 15] are compared in terms
of data efficiency on SSV2 and K400 datasets. As can be
seen, our DiST exhibits consistent advantages over exist-
ing ST-Adapter [18] and EVL [15] across different propor-
tions of training data. Especially on the temporally depen-
dent dataset, i.e., SSV2, DiST demonstrates improvements
of approximately 10% over EVL [15] with fewer training
scales. This suggests that DiST is easier to fine-tune and
shows better generalization capability.

Method Model Frames HMDB51 UCF101
ActionCLIP [21] B/16 32×1×1 40.8±5.4 58.3±3.4

X-CLIP [17] B/16 32×1×1 44.6±5.2 72.0±2.3
DiSTγ=2

❄ B/16 32×1×1 55.4±1.2 72.3±0.6
†DiSTγ=2

❄ B/16 32×1×1 57.4±0.9 73.2±0.6
DiSTγ=2

❄ L/14 32×1×1 57.5±1.6 74.9±0.8
†DiSTγ=2

❄ L/14 32×1×1 61.8±1.3 75.8±0.7

Table A4: Zero-shot performance on HMDB51 [12] and
UCF101 [19] across three splits. † indicates Kinetics-
710 [13, 4, 5] pre-trained models.

1.2. Comparison with the state-of-the-art methods

Zero-shot accuracy with Kinetics-710 pre-training. We
further evaluate the zero-shot performance of DiST on
HMDB51 [12] and UCF101 [19] with the large-scale video
dataset, i.e., Kinetics-710 [13, 4, 5], pre-trained models.
As shown in Tab. A4, we can observe that regardless of
the model size, remarkable improvements can be achieved
by fine-tuning our lightweight temporal encoder and inte-
gration branch on Kinetics-710. Particularly, on HMDB51
that relies on temporal information, the gains of ViT-B and
ViT-L can reach 2.0% and 4.3%, respectively. This further
demonstrates the scalability of DiST on both data scale and
model size.

More results on Something-Something V2 [9] and
Kinetics-400 [13]. Here, we supplement more results with
different frames and resolutions on two datasets in Tab. A3
and Tab. A5 for reference. From the two tables, we can
draw the following conclusions: (i) The more temporal de-
tails brought by more frames is highly effective for both
SSV2 and K400, regardless of model size and pre-training
datasets used. For example, increasing the frames from 8
to 32 can result in consistent performance improvements of
around 2.0% on SSV2 and around 1.5% on K400. This is



Method Pre-train Architecture Input Size TFLOPs×Cr.×Cl. Param (M) Frozen Top-1 Top-5

TAda [10] ImageNet-1K ConvNeXt-T 32× 2242 0.1× 3× 2 38 ✗ 79.1 93.7
SlowFast [8] - R101+NL 16× 2242 0.4× 3× 10 60 ✗ 79.8 93.9

TimeSformer [2] ImageNet-21K ViT-L 96× 2242 8.4× 3× 1 430 ✗ 80.7 94.7
MViT [7] - MViT-B 64× 2242 0.5× 1× 5 37 ✗ 81.2 95.1

ViViT FE [1] ImageNet-21K ViT-L 128× 2242 4.0× 3× 1 N/A ✗ 81.7 93.8
Video Swin [16] ImageNet-21K Swin-L 32× 2242 0.6× 3× 4 197 ✗ 83.1 95.9

UnifromerV2 [14] CLIP-400M+K710 ViT-B 8× 2242 0.13× 1× 3 115 ✗ 85.2 96.7
ST-Adapter❄ [18] CLIP-400M ViT-B 32× 2242 0.61× 1× 3 93 ✓ 82.7 96.2

EVL❄ [15] CLIP-400M ViT-B 32× 2242 0.59× 1× 3 115 ✓ 84.2 -
DiSTγ=2

❄ CLIP-400M ViT-B 8× 2242 0.16× 1× 3 112 ✓ 83.6 96.3
DiSTγ=2

❄ CLIP-400M ViT-B 16× 2242 0.32× 1× 3 112 ✓ 84.4 96.7
DiSTγ=2

❄ CLIP-400M ViT-B 32× 2242 0.65× 1× 3 112 ✓ 85.0 97.0
DiSTγ=2

❄ CLIP-400M+K710 ViT-B 8× 2242 0.16× 1× 3 112 ✓ 85.1 96.8
DiSTγ=2

❄ CLIP-400M+K710 ViT-B 16× 2242 0.32× 1× 3 112 ✓ 85.8 97.2
DiSTγ=2

❄ CLIP-400M+K710 ViT-B 32× 2242 0.65× 1× 3 112 ✓ 86.8 97.5

UnifromerV2 [14] CLIP-400M+K710 ViT-L 32× 2242 2.66× 2× 3 354 ✗ 89.3 98.2
TAdaFormer [11] CLIP-400M+K710 ViT-L 32× 2242 1.41× 4× 3 364 ✗ 89.5 -
ST-Adapter❄ [18] CLIP-400M ViT-L 32× 2242 2.75× 1× 3 347 ✓ 87.2 97.6

EVL❄ [15] CLIP-400M ViT-L 32× 2242 2.70× 1× 3 363 ✓ 87.3 -
DiSTγ=2

❄ CLIP-400M ViT-L 8× 2242 0.71× 1× 3 343 ✓ 86.9 97.6
DiSTγ=2

❄ CLIP-400M ViT-L 16× 2242 1.42× 1× 3 343 ✓ 87.6 97.8
DiSTγ=2

❄ CLIP-400M ViT-L 32× 2242 2.83× 1× 3 343 ✓ 88.0 97.9
DiSTγ=2

❄ CLIP-400M+K710 ViT-L 8× 2242 0.71× 1× 3 343 ✓ 87.8 97.9
DiSTγ=2

❄ CLIP-400M+K710 ViT-L 16× 2242 1.42× 1× 3 343 ✓ 88.6 98.2
DiSTγ=2

❄ CLIP-400M+K710 ViT-L 32× 2242 2.83× 1× 3 343 ✓ 89.5 98.4

X-CLIP [17] CLIP-400M ViT-L 16× 3362 3.09× 3× 4 354 ✗ 87.7 97.4
BIKE [23] CLIP-400M ViT-L 32× 3362 3.73× 3× 4 230 ✗ 88.6 98.3
EVL❄ [15] CLIP-400M ViT-L 32× 3362 6.07× 1× 3 363 ✓ 87.7 -

Text4Vis❄ [22] CLIP-400M ViT-L 32× 3362 3.83× 1× 3 231 ✓ 87.8 97.6
UnifromerV2❄ [14] CLIP-400M+K710 ViT-L 32× 3362 6.27× 1× 3 354 ✓ 88.8 98.1

DiSTγ=2
❄ CLIP-400M ViT-L 8× 3362 1.66× 1× 3 343 ✓ 87.2 97.6

DiSTγ=2
❄ CLIP-400M ViT-L 16× 3362 3.32× 1× 3 343 ✓ 87.9 98.0

DiSTγ=2
❄ CLIP-400M ViT-L 32× 3362 6.64× 1× 3 343 ✓ 88.5 98.2

DiSTγ=2
❄ CLIP-400M+K710 ViT-L 8× 3362 1.66× 1× 3 343 ✓ 88.1 97.9

DiSTγ=2
❄ CLIP-400M+K710 ViT-L 16× 3362 3.32× 1× 3 343 ✓ 88.9 98.2

DiSTγ=2
❄ CLIP-400M+K710 ViT-L 32× 3362 6.64× 1× 3 343 ✓ 89.7 98.5

Table A5: Comparison with state-of-the-arts on Kinetics-400.

because SSV2 relies more on temporal details, while K400
depends more on spatial information. (ii) Increasing the
resolution from 224 to 336 has a relatively small impact
on performance, typically around 0.3%, on both datasets,
which is consistent with existing literature [15]. Interest-
ingly, using higher resolutions is apparently less effective
than increasing the size of the pre-training datasets or mod-
els. Therefore, in future research, we will further explore
the potential of video models from both the model and data
scale perspectives.

2. Implementation details

Tab. A6 summarizes the fine-tuning configurations
across multiple datasets and models. In almost all the dif-
ferent datasets and models, the configurations are shared,
which demonstrates the extensive adaptability of our pro-
posed DiST.
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