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Abstract

This is the supplementary material for the paper:“MB-
TaylorFormer: Mutil-branch Efficient Transformer Ex-
panded by Taylor Formula for Image Dehazing" submit-
ted to the ICCV 2023. We first present an efficient im-
plementation of Taylor expanded multi-head self-attention
(T-MSA) via the pseudo-code. Next, we provide details on
the configuration of our multi-scale path embedding, multi-
scale attention refinement (MSAR) module, and two MB-
TaylorFormer variants. Besides, we further explore the ab-
lation experiments on the module and model and present
visual comparison of the ablation studies for each mod-
ule. In the end, we present more qualitative comparison on
datasets of RESIDE [8], CSD [2], and RainCityscapes [6].

1. Efficient Implementation of T-MSA
In the main text, we give the vector-based calculation

of T-MSA, where V ′
i is the output of the T-MSA, Q̃i =

Norm(Qi) and K̃i = Norm(Ki), as follows:

V ′
i = Taylor-Attention (Qi,Ki, Vi)

=

∑N
j=1 V

T
j + Q̃i

T ∑N
j=1 K̃jV

T
j

N + Q̃T
i

∑N
j=1 K̃j

.
(1)

Algorithm 1 is the pseudo-code for the matrix implemen-
tation of T-MSA, which implements efficient self-attention
operations.

2. More Details on The Configuration
2.1. Details on The Configuration of Multi-scale

Patch Emebdding

Fig. 1 is used to demonstrate the transition from the
single-scale and single-branch patch embedding (Fig. 1a)

Algorithm 1: Pseudocode of T-MSA in a
PyTorch-like style.

1 input : A feature map If of shape b× c× h× w
2 output: A feature map Of of shape b× c× h×w

3 If
′ = dwconv(project(If )) # I ′f : b× 3c×h×w

4 # If
′′ : b× head× hw × 3c

head
5 If

′′ = rearrange(I ′f )

6 # Q,K, V : b× head× hw × c
head

7 Q,K, V = chunk(If ′′, chunks = 3, dim = −1)

8 Q′ = normalize(Q, dim = −1)
9 K ′ = normalize(K, dim = −1)

10 # mm: matrix multiplication
11 # numerator : b× head× hw × c

head
12 K_V = mm(K.view(b, head, c

head , hw), V ))
13 Q_K_V = mm(Q,K_V )
14 numerator = sum(V, dim = −2).unsqueeze(2)
15 +Q_K_V

16 # denominator : b× head× hw × c
head

17 K_Ones = sum(K.view(b, head, c
head , h),

18 dim = −2).unsqueeze(2)
19 denominator = h× w +K_Ones+ 1e−6

20 # att : b× head× hw × c
head

21 att=div(nominator, denominator)

22 # att′ : b× c× h× w
23 att′ = rearrange(att)

24 out = project(att)

to the proposed multi-scale patch embedding (Fig. 1e) to
better illustrate our contributions. “-S" means two convolu-
tional layers in series with the same kernel size of 3 to equal
the convolution with the kernel size of 5, and the multi-
scale patch embedding is paralleled; “-P" means two con-
volutional layers in parallel with the same kernel size of 3.
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Figure 1: The structure of patch embedding.

Table 1: Detailed structural specification of two variants of our MB-TaylorFormer.

Model Num. of Branches Num. of Blocks Num. of Channels Num. of heads #Params MACs
MB-TaylorFormer-B [2,2,2,2,2,2,2,2] [2,3,3,4,3,3,2,2] [24,48,72,96,72,48,24,24] [1,2,4,8,4,2,1,1] 2.677M 38.51G
MB-TaylorFormer-L [2,3,3,3,3,3,2,2] [4,6,6,8,6,6,4,4] [48,96,144,192,144,96,48,48] [1,2,4,8,4,2,1,1] 2.652M 37.89G

Table 2: Details on The Configuration of Our MSAR
Module

Num. of Heads Num. of 3×3 Num. of 5×5 Num. of 7×7
1 1 0 0
2 2 0 0
4 2 2 0
8 2 3 3

2.2. Details on The Configuration of Our MB-
TaylorFormer

We provide two variants of MB-TaylorFormer (-B and
-L for basic and large, respectively) in the main paper. Ta-
ble 1 lists the detailed configurations of these variants. MB-
TaylorFormer-B is a lightweight Transformer network that
enables efficient inference while guaranteeing good per-
formance. MB-TaylorFormer-L is more concerned with
improving performance while maintaining an appropriate
number of parameters and MACs.

2.3. Details on The Configuration of MSAR Module.

In our MB-TaylorFormer, each level of encoder-decoder
consists of transformers, where the number of channels in-
creases progressively from top to bottom, we choose the
number of heads depending on the number of channels. To
strengthen the ability of multi-head to integrate multiple in-
formation, we use convolution with multi-scale kernels in
our MSAR module. Table 2 presents the detailed config-
uration of our MSAR module. For example, in the fourth
level, we pass the feature maps of the 8 heads through two
3×3 convolutions, three 5×5 convolutions, and three 7×7
convolutions to generate the scaling factor matrix.

3. Additional Ablation Studies

3.1. The truncation range of offsets

We truncate the offsets of the DSDCN, and Table 3
shows the effect of different truncation ranges on the
model. We find DSDCN with truncated offsets achieves
better performance than DSDCN without truncated offsets.
We attribute the improvement to the fact that the generated
tokens in our approach focus more on local areas of the



Table 3: Ablation study for the truncation range of offset
and the normalization of q and k. Appropriate normaliza-
tion of q and k and inclusion of local correlations for tokens
can help improve model performance.

Network Component PSNR SSIMTruncation range Norm of q & k
Overall [-3, +3] 0.5 40.71 0.992

Patch embedding

[-1, +1] 0.5 40.36 0.992
[-2, +2] 0.5 40.51 0.992
[-4, +4] 0.5 40.33 0.992
[-5, +5] 0.5 40.24 0.991

w/o truncation 0.5 39.16 0.992

TaylorFormer [-3, +3] 1 40.51 0.992
[-3, +3] 0.25 38.89 0.991

feature map. We further investigate the effect of different
truncation ranges and finally choose [−3, 3] as the trunca-
tion range for MB-TaylorFormer.

3.2. The normalization of q and k

Normalizing q, k to a smaller norm can bring qkT close
to 0, thus making the Taylor expansion more accurate, but
it also restricts the value domain of each element in the
attention map. We need to find a balance between them. In
Table 3, we find that the value of PSNR is highest when we
normalize the norm of q and k to 0.5. When normalizing
the norm of q and k to 0.25, the value of PSNR decreases
significantly. This could probably be attributed to that the
value domain of the too-small attention map limits the
Transformer expression capability.

3.3. Visual Comparisons for Ablated Models

We further investigate the qualitative comparison of ab-
lation studies on the image dehazing task. The results in
Fig. 2 demonstrate all methods we proposed could improve
the dehazing performance of our model.

• “SSPE" means single-scale and single-branch patch
embedding.

• “W/o truncation" means the offsets of DSDCN loss
truncation.

• “W/o MSAR" means the MSAR module is removed.

As shown, SSPE and w/o truncation produce artifacts in
the high-frequency region, and w/o MSAR generates coarse
details in the result. In contrast, our full model achieves a
more visually pleasing result, which produces clearer im-
ages and recovers better details. The visual comparisons
show the effectiveness of our methods again.

Table 4: Deeper, wider or more-branch model. Only the
structure of the encoder is given in the table, the decoder
and encoder are symmetrical designs.

Component PSNR SSIM #Params MACsBranch Block Channel
[2,2,2,2] [5,8,8,12] [24,48,72,96] 42.36 0.994 7.131M 95.59G
[2,3,3,3] [4,6,6,8] [24,48,72,96] 42.64 0.994 7.432M 88.07G
[2,3,3,3] [2,3,3,4] [36,72,100,136] 41.53 0.994 7.500M 94.60G
[3,4,4,4] [4,6,6,8] [20,40,60,88] 42.01 0.993 7.572M 82.48G

Input (9.50/0.618) SSPE (33.13/0.988)

W/o truncation (33.10/0.989) W/o MSAR (37.47/0.988)

Full model (41.39/0.991) GT (PSNR(dB)/SSIM)

Figure 2: The qualitative comparison of ablation studies.
The result of our full setting has the best visual quality and
details.

4. More Qualitative Comparisons

4.1. The Qualitative Comparison on SOTS

We present more visual results in Fig. 3, Fig. 4, Fig. 5,
and Fig. 6. As can be seen, the results of our method have
better visual quality.

4.2. The Qualitative Comparison on CSD

In Fig. 7, we provide the visual comparison with other
advance models on CSD [2]. We can clearly observed
that our MB-TaylorFormer can reconstruct high-quality
snow-free image very close to GT. Specifically, the MB-
TaylorFormer restores better detail to the image than other
methods (as shown in the red box).



4.3. The Qualitative Comparison on RainCi-
tyscapes

We illustrate the predictions from rain removal dataset
like RainCityscapes [6] in Fig. 8. It can be seen that MB-
TaylorFormer achieves visually pleasing results compared
to the previous methods. It works very well in removing
both fog and rain streaks. It can be seen from Fig. 8 that our
method can even restore areas with very severe degradation,
while other methods produce severe artifacts.
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Input (13.65/0.761) DCP (10.50/0.668) [5]

GDN (28.71/0.982) [10] MSBDN (32.23/0.986) [3]

FFA-Net (37.51/0.992) [11] SGID-PFF (35.48/0.994) [1]

MAXIM (37.84/0.990) [12] Dehamer (37.53/0.992) [4]

Ours (44.34/0.996) GT (PSNR(dB)/SSIM)

Figure 3: The qualitative comparison on SOTS-Indoor [8]. Our result has the best visual quality and details.



Input (9.02/0.586) DCP (12.81/0.697) [5]

GDN (29.40/0.975) [10] MSBDN (33.78/0.982) [3]

FFA-Net (34.97/0.984) [11] SGID-PFF (30.31/0.980) [1]

MAXIM (34.98/0.984) [12] Dehamer (39.20/0.986) [4]

Ours (43.38/0.992) GT (PSNR(dB)/SSIM)

Figure 4: The qualitative comparison on SOTS-Indoor [8]. Our result has the best visual quality and details.



Input (13.95/0.785) DCP (23.56/0.894) [5]

GDN (28.31/0.970) [10] MSBDN (27.43/0.946) [3]

FFA-Net (31.94/0.984) [11] SGID-PFF (29.76/0.977) [1]

MAXIM (26.74/0.984) [12] Dehamer (26.38/0.983) [4]

Ours (38.29/0.988) GT (PSNR(dB)/SSIM)

Figure 5: The qualitative comparison on SOTS-Outdoor [8]. Our result has the best visual quality and details.



Input (22.72/0.961) DCP (13.71/0.787) [5]

GDN (25.10/0.980) [10] MSBDN (22.23/0.954) [3]

FFA-Net(30.35/0.990) [11] SGID-PFF (18.53/0.930) [1]

MAXIM (25.95/0.979) [12] Dehamer (30.22.38/0.988) [4]

Ours (40.94/0.994) GT (PSNR(dB)/SSIM)

Figure 6: The qualitative comparison on SOTS-Outdoor [8]. Our result has the best visual quality and details.



Input (13.89/0.755) [10] TKL (28.81/0.939) [3]

HDCW-Net (29.60/0.922) [11] SMGARN (29.81/0.950) [1]

Uformer (30.15/0.949) [12] Restormer (33.26/0.957) [4]

Ours 38.34/0.980) GT (PSNR(dB)/SSIM)

Figure 7: The qualitative comparison on CSD [2]. Our result has the best visual quality and details.



Input (13.31/0.809) RESCAN (26.77/0.970) [9]

PCNet (25.12/0.934) [7] EPRRNet (28.45/0.963) [15]

Uformer (26.95/0.953) [13] Restormer (29.86/0.978) [14]

Ours (32.61/0.986) GT (PSNR/SSIM)

Figure 8: The qualitative comparison on RainCiryscapes [6]. Our result has the best visual quality and details.


