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B. Additional experiments details
Details of ACC dataset. To validate the ability to han-
dle the complex nonlinear motion of the proposed method
on a more challenging dataset, we derived the ACC dataset
by excluding frames under constant general motions (even
static) from the BS-RSC [1] dataset. The Tab. 1 and Fig. 1
show the removed frame from BS-RSC[1].

Table 1: The removed frames of BS-RSC [1].

Scene ID Removed frame
Scene 53 00000 - 00004
Scene 56 00000 - 00024
Scene 62 00000 - 00009

C. Additional ablation study
Ablation study of the optical flow. In our implementa-
tion, we use the RAFT [12] (for Fastec-RS and BS-RSC
datasets) or GMA [7] (for Carla-RS dataset) of OpenMM-
Lab Optical Flow Toolbox [2] to predict optical flow from
the 5 consecutive RS frames, followed by Multi-QRS mo-
tion solver to predict the correction fields and obtain the
latent occluded three RSC frames. To investigate the ef-
fect of optical flow for the proposed method, we replace
RAFT with a weaker optical flow estimator PWCNet [11].
As shown in Table. 2, the performance of using the PWC
optical flow estimator degrades, but it still significantly out-
performs the state-of-the-art.
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Figure 1: Illustration of removed static and constant frames of BS-
RSC[1].

Table 2: Ablation study of RAFT [12] and PWCNet [11] optical
flow estimator on the BS-RSC dataset.

Setting PSNR↑ SSIM ↑ LPIPS ↓
RAFT [12] 33.50 0.946 0.0299

PWCNet [11] 31.57 0.924 0.0464

D. Additional performance comparison.
D.1. Generalization Ability

We provide the generalization capability of the proposed
method on PSNR in Fig. 3 by performing cross-tests on
Carla-RS, Fastec-RS and BS-RSC datasets. The confusion
matrices show the relative decline rate rde in Eq. (13) for
evaluation, and a lower rde indicates a better generalization.
Our method outperforms DSUN and CVR, demonstrating a
satisfied generalization ability. Besides, this is well sup-
ported by the visual correction result in Section. D.3.

D.2. RS temporal super resolution

Benefiting from the analytical properties of Eq. (6)(7),
the proposed method is able to handle RS temporal super-
resolution tasks as [4] by adjusting the hyperparameter
τ . This section provides examples of RS temporal super-
resolution under nonlinear motions and dynamic scenes. As
shown in Fig. 2, our methods achieve rich and satisfying
RS correction results among the time stamp τ from 0 to
0.8. Especially in the challenging 3rd row, where the cam-
era was rotating rapidly to film the forwarding train, our
method simultaneously removed the RS effect of the high-
speed green train and pole. In constant, CVR fails to correct
poles in the first and second rows and the door of the green
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Figure 2: Example results of recovering temporal super-resolution video images from input RS images by using CVR [4] and our method.

Carla Fastec BS-RSC

Ca
rla

Fa
st

ec
BS

-R
SC

0.000 0.086 0.171

0.135 0.000 0.196

0.210 0.198 0.000

DSUN

Carla Fastec BS-RSC

Ca
rla

Fa
st

ec
BS

-R
SC

0.000 0.030 0.171

0.148 0.000 0.190

0.312 0.211 0.000

CVR

Carla Fastec BS-RSC

Ca
rla

Fa
st

ec
BS

-R
SC

0.000 0.056 0.097

0.118 0.000 0.155

0.069 0.075 0.000

Ours

0.00

0.05

0.10

0.15

0.20

Figure 3: Generalization capability comparisons on PSNR of our
method with existing RSC algorithms DSUN [9] and CVR [4]
across Carla-RS, Fastec-RS, and BS-RSC datasets.

train in such a dynamic scene.

D.3. Visual Comparisons

In addition to Carla-RS, Fastec-RS [9] and BS-RSC [1]
datasets, We provide more visual comparison details on var-
ious datasets with general 6 DoF motion, dynamic scenes,
and nonlinear movements, i.e., GPark [6], Seq77 [8], 3GS,
and House [5] datasets. Besides, we capture a number
of real RS videos, which contain frames in a highly dy-
namic scene from YouTube, namely, Train at speed and
Bus. We merely display visible results because they only
provided RS images but no GS images. The compared
state-of-the-art RSC methods are geometry-based meth-
ods DSfM [14], and learning-based methods DSUN [9],
SUNet [3], JCD [13], CVR [4] and AdaRSC [1]. All the
results are shown in Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9,
Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14 and Fig. 15.

D.4. Runtime Comparison

We compare our time cost with others from two aspects:
▷ Image Correction: Our code is implemented in python
and runs on a server with an Intel Xeon Gold 6248R (96)

Table 3: Comparison of runtime with input RS image at varying
resolutions.

Resolution Method
CVR (2) AdaRSC (3) QRS Solver, Ours (3) Ours (5)

640 × 480 0.175 0.2264 0.304 1.227
1024 × 768 0.271 0.4220 0.648 2.013

1920 × 1080 0.468 1.0291 1.706 6.201

Table 4: ϵ = duration of original frames in the sequence
the processing time of different RSC augmented ORB-SLAM2 ↑

RS DSfM DSUN JCD SUNet CVR AdaRSC QRS Solver

1.90404 0.00002 0.08600 0.04680 0.20400 0.21530 0.13766 1.17030

@ 3.000GHz CPU and NVIDIA A100 GPU. The runtime
result is shown in Table. 3. On average, our method uses
5 frames as input and respectively costs 1.227s, 2.013s, and
6.201s on the resolution 640 × 480, 1024 × 768 and 1920 ×
1080, about 5 times of AdaRSC [1] and 7 times of CVR [4].
Besides, the Prime QRS Solver takes 3 frames as input
and consumes about 1.5 times AdaRSC [1] and 2 times
CVR [4]. The proposed method requires dense match-
ing between multiple consecutive frames, which causes the
high time cost. However, this is actually acceptable, consid-
ering the satisfying performance of image correction han-
dling extremely dynamic occlusion and nonlinear motion.
▷ 3D Vision Applications: By applying QRS Solver (W/o
RSA2Net) to correct sparse features only instead of every
pixel as a pre-processing for the downstream 3D analysis
with real-time demands, such as ORB-SLAM (in the sup-
plemental video). Our algorithm will eliminate the high
time cost, but other GPU-based methods do not have this
potential. The real-time factors ϵ reported in Tab. 4 demon-
strate the efficiency of QRS Solver on the TUM dataset at
more than 5.7 times faster than the SOTA methods.



E. Motion estimation accuracy
As shown in Fig. 4a, to directly measure the motion esti-
mation accuracy, we simulated a cube scene with 216 3D
points (with constant and non-linear motion) because the
practical correction fields are unavailable on real datasets.
This experiment investigated the motion estimation errors
in Euclidean distance (Fig. 4b) between the predicted RS
correction vector fields from two motion models (linear
and QRS) and the Ground Truth, as the ratio of non-linear
points increased from 0 to 100. The results in Fig. 4c
demonstrate that as the ratio of non-linear points grows, the
error of the Linear Solver will increasingly exceed that of
the QRS Solver.
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Figure 4: Illustration of motion estimation error.

F. The order of Taylor expansion
Intuitively, higher-order models can improve accuracy

but certainly lead to higher computational costs and numeri-
cal instability. According to the evaluation results in Tab. 5,
the 3-order model performs worse due to its sensitivity to
optical flow noise and indicates lower numerical stability
and robustness. Instead, the 2-order model achieves a favor-
able trade-off between accuracy and cost. A similar conclu-
sion is also evidenced by [10] (Fig. 4) that the 2-order model
achieves significant improvements, while the 3-order model
shows only small improvements. According to our observa-
tions, the 2-order model is sufficient to handle daily appli-
cations, even on rarely challenging datasets shown in Fig. 8,
Fig. 9, Fig. 10 and Fig. 11. (Note that the results are slightly
inconsistent with Fig. 10 because the 3-ord model takes 4
frames as input and corrects 1 image, so we evaluated the
corrected N − 3 images on each sequence). Besides, the
proposed RSAdaCof has addressed QRS Solver’s inability
to fully model all motion in Sec. 3.5 and ablation study in
Tab. 5 demonstrates its remarkable effectiveness.
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Figure 5: Visual comparison against the state-of-the-art RSC methods in general 6 Dof scenes of Carla-RS [9] dataset.
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Figure 6: Visual comparison against the state-of-the-art RSC methods on House [5] datasets.

RS DSfM DSUN SUNet

JCD CVR OursAdaRSC

Figure 7: Visual comparison against the state-of-the-art RSC methods on Seq77 [8] dataset.
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Figure 8: (a) Visual comparison against the state-of-the-art RSC methods in extremely nonlinear motion scenes of 3GS [5] dataset. Existing
works fail to handle strong rotation and strong translation.
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Figure 9: (b) Visual comparison against the state-of-the-art RSC methods in extremely nonlinear motion scenes of 3GS [5] dataset. Existing
works fail to handle strong rotation and strong translation.
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Figure 10: (a) Visual comparison against the state-of-the-art RSC methods in nonlinear motion scenes of Gpark [6] datasets. Existing
works fail to handle strong translation and produce local blur.
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Figure 11: (b) Visual comparison against the state-of-the-art RSC methods in nonlinear motion scenes of Gpark [6] datasets. Existing
works fail to handle strong translation and produce local blur.
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Figure 12: (a) Visual comparison against the state-of-the-art RSC methods in highly dynamic scenes of Train at speed video sequences.
The camera was rotating rapidly to film the forwarding train. All existing RSC solutions fail in such a dynamic scene. In contrast, Our
method corrects distortions properly.
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Figure 13: (b) Visual comparison against the state-of-the-art RSC methods in highly dynamic scenes of Train at speed video sequences.
The camera was rotating rapidly to film the forwarding train. All existing RSC solutions fail in such a dynamic scene. In contrast, Our
method corrects distortions properly.
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Figure 14: (a) Visual comparison against the state-of-the-art RSC methods in highly dynamic scenes of Bus video sequences. Only the
proposed method can rectify the moving bus back to the right position and recover the occlusion, while the others either fail in correction
or produce artifacts.
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Figure 15: (b) Visual comparison against the state-of-the-art RSC methods in highly dynamic scenes of Bus video sequences. Only the
proposed method can rectify the moving bus back to the right position and recover the occlusion, while the others either fail in correction
or produce artifacts.


