
A. Appendix
A.1. SemCL Pseudocode

The forward-backward propagation of SemCL is given
in Algorithm 1.

Algorithm 1 SemCL: PyTorch-style Pseudocode

1 # Employ MoCo v3 framework
2 # fb: base encoder := backbone + proj mlp + pred

mlp↪→

3 # fm: momentum encoder := backbone + proj mlp
4 # m: momentum coefficient
5 for xa, xna in dataloader: # load a minibatch

xa, xna with batchsize N↪→

6 # xa: anchor images, xna: ¬anchor images
7 # anchor images' forward process
8 xa0, xa1, xa2 = aug0(xa), aug1(xa), aug2(xa) #

augmentation: [N, 3, H, W] each↪→

9 qa0, qa1, qa2 = fb(xa0), fb(xa1), fb(xa2) #
queries: [N, C] each↪→

10 ka0, ka1, ka2 = fm(xa0), fm(xa1), fm(xa2) #
keys: [N, C] each↪→

11 # ¬anchor images' forward process
12 xna0, xna1, xna2 = aug0(xna), aug1(xna),

aug2(xna)↪→

13 qna0, qna1, qna2 = fb(xna0), fb(xna1), fb(xna2)
14 kna0, kna1, kna2 = fm(xna0), fm(xna1),

fm(xna2)↪→

15 # stack keys
16 poskstk=stack([ka0,ka1,ka2],dim=1) # [N, 3, C]
17 negkstk=stack([kna0,kna1,kna2],dim=1) # [N, 3,

C]↪→

18 loss=(paried_infonce(qa0,ka1,negkstk)
19 +paried_infonce(qa1,ka2,negkstk)
20 +paried_infonce(qa2,ka0,negkstk)
21 # symmetrized
22 +paried_infonce(qna0,kna1,poskstk)
23 +paried_infonce(qna1,kna2,poskstk)
24 +paried_infonce(qna2,kna0,poskstk))
25 loss.backward()

26 update(fb) # optimizer update: fb
27 fm = m*fm + (1-m)*fb # momentum update: fm

A.2. Implementation of Paired InfoNCE Loss

A pseudocode is listed in Algorithm 2. The difference
between unpaired and paired InfoNCE losses lies in the cal-
culation of negative logits. N and D denote the batch size
and the embedding dimension respectively. For a query of
the shape [N,D] having M paired negative samples, nega-
tive logits are the matrix multiplication (@) between a new
dimension inserted query at dim = 1 and negative keys of
the shape [N,M,D]. After removing the inserted dimen-
sion from the negative logits, it is concatenated with the
positive logits as (M + 1) dimension logits, where the first
element [:, 0] is the positive logit. Finally, the InfoNCE loss

is also implemented by the cross-entropy loss [17], where
labels are set to the indices of the positive logits. ↪→ is the
newline symbol.

Algorithm 2 Paired InfoNCE Loss

1 # query: [N, D] Tensor with query samples
2 # pos_key: [N, D] Tensor with positive samples
3 # neg_keys: [N, M, D] Tensor with negative

samples↪→

4 # τ: temperature
5 def paried_infonce(query, pos_key, neg_keys,

temperature=τ):↪→

6 # Logits of positive pairs
7 pos_logit = sum(query * pos_key, dim=1) #

pos_logit:[N, 1]↪→

8 query = query.unsqueeze(1) # query: [N, 1,
D]↪→

9 neg_logits = query @ transpose(neg_keys)#
[N, 1, M]↪→

10 neg_logits = neg_logits.squeeze(1)# [N, M]

11 logits = concat([pos_logit, neg_logits],
dim=1)# [N, 1+M]↪→

12 # Ground truth class indices
13 labels = zeros(len(logits))# [N]

14 return cross_entropy(logits / temperature,
labels)↪→

15 def transpose(x):
16 return x.transpose(-2, -1)

A.3. Downstream Tasks Setups

A.3.1 Semantic Segmentation

To maintain consistency with previous studies, we adopt the
Deeplabv3+ [3] structure for ResNets and UPerNet [19] for
Swin Transformers [11] in the semantic segmentation task.
All-layer fine-tune is conducted end-to-end on training sets
of VOC2012, Cityscapes, ADE20K and COCO 2017 re-
spectively. The data augmentation strategy is as follows:
rescale each sample by its short edge with a random ratio
from the range [0.5, 2.0], then random crop to 769×769 for
Cityscapes and 513 × 513 for the others, and random hori-
zontal flip. We adopt AdamW [12] with wd = 1.0× 10−4,
and base lr = 5 × 10−5. The learning rate schedule is
step (multiple base lr by 0.1 at 75% and 90% of training)
for Cityscapes and OneCycle [15] for the other datasets.
All models are tuned for 80k iterations on corresponding
benchmark with batch size 16.

A.3.2 Object Detection and Instance Segmentation

We use mmdetection [2] as our codebase for object detec-
tion and instance segmentation tasks. SemCL backbones of
ResNet50 and Swin-T, pretrained on corresponding SemCL



sub-datasets, are fine-tuned on training sets of VOC07+12,
Cityscapes and COCO 2017, respectively. The model is
Faster R-CNN [13] for VOC and Cascade Mask R-CNN
[1, 8] for Cityscapes and COCO. For VOC and COCO, the
image scale (short edge) is [480, 800] during training and
800 during inference. For Cityscapes, the image scale is
[704, 1024] during training and 1024 during inference. The
evaluation metric of object detection is AP50 for VOC and
APbox for Cityscapes and COCO. For instance segmenta-
tion, the evaluation metric is APmask. We adopt AdamW
[12] with wd = 0.05. The training schedule is 3×(36
epochs for VOC and COCO, 192 epochs for Cityscapes)
with a step learning rate schedule (multiple base lr by 0.1
at 75% and 90% of training) with base lr = 1 × 10−4 for
Cityscapes and lr = 6 × 10−5 for VOC and COCO. The
batch size is 16.

A.3.3 Depth Estimation

We use the Monocular Depth Estimation Toolbox

[9] as our code base for depth estimation tasks. Consid-
ering that Binsformer [10] achieves previous state-of-the-
art results, we adopt it as the model for SemCL pretrained
ResNet50, Swin-T and Swin-L. SemCL backbones pre-
trained on SemCL-City are fine-tuned and evaluated on test
sets of Cityscapes and KITTI [16, 6], and those pretrained
on SemCL-COCO are fine-tuned and evaluated on test set
of NYUv2 [14]. The crop size (short edge) for Cityscapes
and KITTI is [352, 704], and [416, 544] for NYUv2. We
use AdamW with wd = 0.01 and OneCycle [15] learn-
ing rate schedule with base lr = 5 × 10−5 for all bench-
marks. The evaluation metrics are Absolute Relative Error
(AbsRel) and Root Mean Square Error (RMSE). The batch
size is 16.

A.4. Ablation Study

In this part, we ablate the following aspects of SemCL:
the performance difference between paired and unpaired (as
in MoCo v3 [5]) InfoNCE loss under the SemCL frame-
work (see Section A.4.1), pretraining batch size (see Sec-
tion A.4.2) since paired InfoNCE loss intrinsically de-
couples the number of negative samples from batch size,
and training length and dataset scale (see Sections A.4.3
and A.4.4) to investigate model saturation under the SemCL
framework.

Setup. As Cityscapes supports all downstream tasks,
Swin-T is pretrained on the SemCL-City dataset for 100
epochs with batch size 128 (for faster pretraining) as base-
line settings, unless otherwise specified. Other settings re-
main the same as in the pretext task (see Section 3.3).

A.4.1 Paired/unpaired InfoNCE loss

For instance discrimination [18] task, ImageNet is a preva-
lent choice since IN samples are characteristic by centered
main subject and less surroundings information. As for the
SemCL framework, the goal of the pretext task is to en-
dow the model with the ability to distinguish an object from
its surroundings, for which we adopt datasets whose sam-
ples contain more surrounding info with semantic labels.
By exploiting the small-scale semantic information, object-
environment pairs are compared at the sub-scene level. In
this way, paired InfoNCE loss is applied to push the subject
away from its surroundings in the embedding space.

The difference between paired and unpaired InfoNCE
losses in the SemCL framework is illustrated in Table 1.
Compared to the models pretrained with paired InfoNCE
loss, the models pretrained with unpaired InfoNCE loss per-
forms worse in all downstream tasks. The unpaired pre-
trained model is even not a patch on the ImageNet super-
vised pretrained counterparts in the depth estimation task.
Although the unpaired model is on par with the paired one
in instance segmentation, its APbox is 0.5 points lower than
the paired model. As for the semantic segmentation task,
the gain of the unpaired model is small compared to the IN
pretrained baseline, while the paired model achieves an im-
provement of 0.28 points.

A.4.2 Batch Size

In the MoCo series [7, 4, 5], the pretext task is instance
discrimination [18]. In each batch of N+1 samples, each
sample, together with its augmentations, is compared with

Table 1: Paired/unpaired InfoNCE loss vs. semantic seg-
mentation, object detection and depth estimation (lower is
better) on Cityscapes using Swin-T.

(a) Semantic segmentation, object detection and instance segmentation.

InfoNCE Semantic seg. Object det.
mIoU APbox APmask

IN-22k 78.67 45.9 39.8
Unpaired 78.60(-0.07) 45.7(−0.2) 40.2(+0.4)

Paired 79.17(+0.50) 46.2(+0.3) 40.2(+0.4)

(b) Depth estimation.

InfoNCE Dep. estimation
Abs Rel RMSE

IN-22k 0.134 4.643
Unpaired 0.138(+0.004) 4.660(+0.017)

Paired 0.133(−0.001) 4.575(−0.068)



Table 2: Training length vs. semantic segmentation, ob-
ject detection and depth estimation (lower is better) on
Cityscapes using Swin-T.

Training Semantic seg. Instance seg. Dep. estimation
length(ep) mIoU APmask Abs Rel RMSE

IN-22k 78.67 39.8 0.134 4.643
100 79.17(+0.50) 40.2(+0.4) 0.133(−0.001) 4.575(−0.068)
300 79.53(+0.86) 40.4(+0.6) 0.132(−0.002) 4.563(−0.080)

the remaining N negative samples. And the results of the
ImageNet linear classification protocol have a positive cor-
relation with the number of negative samples (batch size)
[7]. But things are different for SemCL, the mechanism of
contrasting at the sub-scene level decouples the number of
negative samples from the batch size.

The results of the downstream tasks vs. pretraining batch
size are shown in Figure 1. In Figures 1a to 1c the results of
the SemCL models are insensitive to the pretraining batch
size. The slight deterioration of the RMSE in Figure 1b and
APmask in Figure 1c from batchsize = 256 may be related
to the combination of SyncBN and gradient accumulation
during pretraining. SemCL is friendly to those who suffer
from insufficient GPU memory.

A.4.3 Training Length

In Table 2 we report the performance on downstream tasks
vs. training length. Swin-T benefits from longer pretrain-
ing in both the instance segmentation and depth estimation
tasks.

A.4.4 Dataset Scale

In Section 4.2, the performance of SemCL pretrained
ResNet50 and Swin-T lags behind their IN pretrained coun-
terparts, which is considered to be due to insufficient pre-
training samples in the SemCL-VOC dataset. In Table 3 we
perform the comparison between the pretraining datasets
SemCL-VOC (14,203 pairs) and SemCL-Stuff (a mix-
ture of SemCL-VOC, SemCL-ADE and SemCL-COCO,
996,633 pairs) on the VOC2012 semantic segmentation and
VOC2007 object detection tasks. Swin-T is pretrained on
the two datasets for 30k iterations (273 epochs for SemCL-
VOC and 4 epochs for SemCL-Stuff) respectively. The
model pretrained on SemCL-Stuff significantly outperforms
the model pretrained on SemCL-VOC. Swin-T enjoys the
benefit of pretraining on a larger datasets.

References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-
tion, pages 6154–6162, 2018. 2

64 128 256 512 1024
pretraining batch size(log-scale)

74

76

78

80

82

84

m
Io
U 78.97 79.17

78.64 78.73 78.78

(a) Semantic segmentation

64 128 256 512 1024
pretraining batch size(log-scale)

0.130

0.132

0.134

0.136

0.138

0.140

Ab
s R

el

0.133
0.133 0.133 0.133 0.133

4.0

4.2

4.4

4.6

4.8

5.0

RM
SE

4.565 4.575 4.579 4.598 4.606

(b) Depth estimation

64 128 256 512 1024
pretraining batch size(log-scale)

40

42

44

46

48

50

AP
bo

x 45.5
46.2 46.3 45.9 46.1

36

38

40

42

44

46

AP
m
as
k

41.1
40.2 40.4

39.6 39.9

(c) Object detection&instance segmentation

Figure 1: Comparison of pretraining batch sizes in down-
stream tasks. Due to hardware limitations, pretraining batch
sizes of 256, 512 and 1024 are achieved through gradient
accumulation.

Table 3: Dataset scale vs. semantic segmentation (Pascal
VOC2012 val) and object detection (Pascal VOC2007 test)
using Swin-T.

Pretraining Semantic Seg. Object det.
dataset mIoU AP50

IN-22k 80.90 86.58
SemCL-VOC 81.57(+0.67) 86.30(−0.28)
SemCL-Stuff 81.70(+0.80) 86.69(+0.11)



[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 1

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 1

[4] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 2

[5] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9640–9649, 2021. 2

[6] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 2

[7] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 2, 3

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 2

[9] Zhenyu Li. Monocular depth estimation toolbox.
https://github.com/zhyever/Monocular-
Depth-Estimation-Toolbox, 2022. 2

[10] Zhenyu Li, Xuyang Wang, Xianming Liu, and Junjun Jiang.
Binsformer: Revisiting adaptive bins for monocular depth
estimation. arXiv preprint arXiv:2204.00987, 2022. 2

[11] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 1

[12] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 1, 2

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 2

[14] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. ECCV (5), 7576:746–760, 2012. 2

[15] Leslie N Smith and Nicholay Topin. Super-convergence:
Very fast training of neural networks using large learning
rates. In Artificial intelligence and machine learning for
multi-domain operations applications, volume 11006, pages
369–386. SPIE, 2019. 1, 2

[16] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In International Conference on 3D Vision (3DV), 2017. 2

[17] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
e-prints, pages arXiv–1807, 2018. 1

[18] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742,
2018. 2

[19] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), September 2018. 1

https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox
https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox

