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1. Proof of Proposition 1
Consider an image space RH0×W0 . For a PSF k ∈

RH×W with H � H0 and W � W0, its inverse ker-
nel k† is defined in the frequency domain as follows: for
0 ≤ ωx < H0, 0 ≤ ωy < W0,

F(k†)[ωx, ωy] =

{ 1
F(k)[ωx,ωy ]

, if |F(k)[ωx, ωy]| 6= 0;

0, otherwise
(1)

Consider the standard expansion-based dyadic upsampling
operator Us :=↑s, where the operator ↑s: RH×W →
RsH×sW can be defined in the Fourier domain as follows:

(k ↑s)[ωx, ωy] =

{
k[ωx

s ,
ωy

s ], if ωx

s ,
ωy

s ∈ Z;
0, otherwise. (2)

In the remaining discussion, any index [ω1, ω2] outside the
range [0, H0 − 1] × [0,W0 − 1] is defined as [ω1 mod
H0, ω2 mod W0]. Then, we have

F(k ↑s)[ωx, ωy] = F(k)[sωx, sωy]. (3)

By the definition of inverse kernel, we have then

F((k ↑s)†)[ωx, ωy]

=

{ 1
F(k)[sωx,sωy ]

, if |F(k)[sωx, sωy]| 6= 0;

0, otherwise

= F(k†)[sωx, sωy]

= F((k†) ↑s)[ωx, ωy].

(4)

Thus, we have
(k ↑s)† = (k†) ↑s . (5)

That is, the inverse kernel and the upsampling operator are
commutative. Suppose that k† can be expressed as a linear
combination over a set of atoms V = {vn}Nn=1:

k† =

N∑
n=1

wn · vn, (6)

Then, we have

(k ↑s)† = (k†) ↑s= (

N∑
n=1

wn · vn) ↑s=
N∑

n=1

wn · (vn ↑s).

(7)

Remark 1. For interpolation-based upsampling operators,
they usually can be expressed as

Us(k) = (k ↑s) ∗ hs, (8)

for some low-pass filter hs whose size is related to s. For in-
stance, hs = [ 12 , 1,

1
2 ] for 1D linear interpolation on s = 2.

Based on (5) and that (a∗b)† = a†∗b†, we have a general-
ized commutativity between inverse kernel and upsampling:(

Us(k)
)†

= (k ↑s)† ∗ h†s =
(
(k†) ↑s

)
∗ h†s. (9)

As a result, in analog to (7), we have a generalized span:

(Us(k))† =
N∑

n=1

wn · (vn ↑s ∗h†s). (10)

Such a generalized form is implicitly implemented in our
INR-based model.

2. Additional Analysis
2.1. Influence of Atom Size and Atom Number

We investigate the impact of two main hyper-parameters,
maximum atom size and atom number, in our INR-based
model, by fixing one and varying the other. Concretely,
we vary the maximum atom size to 7×7, 9×9, 11×11,
13×13, 15×15, 17×17, 19×19, respectively, with a fixed
atom number of 10, and we vary the atom number to 2, 4,
6, 8, 10, 12, 14, 16, respectively, with a fixed maximum
atom size of 15×15. The results plotted in Fig. 1 show that
(a) when the atom size or atom number is too small, the
performance of our INIKNet decreases noticeably, which
is probably caused by under-fitting; (b) when setting the
two hyper-parameters to larger values than the ones used
in our experiments, the performance of INIKNet even has
certain increase in some cases; (c) when the atom number
is set too large, INIKNet performs slightly worse, probably
due to overfitting; and (d) within a reasonable range of the
hyper-parameters, INIKNet performs stably well.

2.2. Deblurring via INR Atoms vs. Non-INR Atoms

See Fig. 2 for some deblurred images on the CUHK
dataset using INIKNet and its non-INR version respectively.



7 9 11 13 15 17 19
Maximum Atom Size

24.25
24.50
24.75
25.00
25.25
25.50
25.75
26.00

PS
NR

(d
B)

DPDD
RealDOF
RTF

2 4 6 8 10 12 14 16
Atom Number

24.25
24.50
24.75
25.00
25.25
25.50
25.75
26.00

PS
NR

(d
B)

DPDD
RealDOF
RTF

Figure 1: PSNR w.r.t. max atom size and atom number.
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Figure 2: Deblurred image using INR-based model vs.
non-INR model on CUHK dataset (without ground-truths).
Zoom in for better views.

Leveraging INR-based inverse kernel atoms, INIKNet can
recover cleaner textures with fewer artifacts.

2.3. Polar vs. Grid Coordinates in INR

As mentioned in Section 4.2 [Details of Key Modules]
of our main paper, using polar coordinates instead of grid
coordinates as input is one difference for INR from many
existing works and can lead to some performance improve-
ment (though not our main contribution). See Table 1 for
their results for comparison.

Input DPDD RealDOF RTF
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Grid 26.021 0.801 0.191 25.173 0.758 0.292 25.393 0.825 0.223
Polar 26.055 0.803 0.185 25.231 0.765 0.287 25.450 0.834 0.215

Table 1: Results of grid/polar coordinates used for INR.

2.4. Performance Comparison to MIMOUNet

MIMOUNet [1] is a popular milt-scale NN for dynamic
scene deblurring which employs asymmetric feature fusion
to directly aggregate features of different scales. Table 2
presents the results of MIMOUNet trained on DPDD under
the same training setting as ours. The MIMOUNet shows
close performance to our INIKNet, but using a much larger
model. In addition, its generalization performance on Re-
alDOF and RTF is not as good as that of INIKNet, particu-
larly that the PSNR gap is more than 0.8dB on RTF. These
results again demonstrate the effectiveness of our approach.

Method DPDD RealDOF RTF #Par.
(M)PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

MIMOUNet 25.951 0.798 0.187 24.851 0.746 0.348 24.520 0.795 0.297 16.11
INIKNet 26.055 0.803 0.185 25.231 0.765 0.287 25.450 0.834 0.215 1.98

Table 2: Comparison with MIMOUNet trained on DPDD.

3. Additional Qualitative Results
In addition to those in the main paper, we provide ex-

tensive visual comparisons in Fig. 3, 4, 6, 5, 7, 8. When
our INIKNet model is trained on DPDD, it not only per-
forms well on the corresponding test split (see Fig. 3),
but also shows superior generalization performance on Re-
alDOF (see Fig. 4) and CUHK (see Fig. 5) both of which
have a large domain gap against DPDD. Same thing hap-
pens when training on LFDOF (see Fig. 6, 7, 8). Under
some extreme situations with severe blur, most methods
fail while ours still works. Note that although the DRBNet
trained on LFDOF achieves comparable performance to our
INIKNet on LFDOF, its generalization performance to un-
seen patterns on CUHK is not as good as that of INIKNet
(see Fig. 7, 8). These additional results further demonstrate
the superiority of our proposed approach.
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Figure 3: Results on DPDD using models trained on DPDD. Zoom in for better views.
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Figure 4: Results on RealDOF using models trained on DPDD. Zoom in for better views.
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Figure 5: Results on CUHK dataset using models trained on DPDD. Zoom in for better views.
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Figure 6: Results on LFDOF using models trained on LFDOF. Zoom in for better views.
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Figure 7: Results on CUHK dataset (without ground truths) using models trained on LFDOF. Zoom in for better views.
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Figure 8: Results on CUHK dataset (without ground truths) using models trained on LFDOF. Zoom in for better views.


