
Supplementary material
The Supplementary material is organized as follows:

• Extended discussion and details regarding the datasets
we use (§A).

• Additional details about each of the modalities, as well
as the modality-specific models we use (§B).

• An ablation study, alike the one in Table 5 (main
paper), conducted on the Something-Something and
Something-Else datasets (§C).

• Details on approaches which leverage multimodal data
during training (§D).

• Analysis of the performance of our approach on seen
and unseen environments (§E).

• Extended per-class performance breakdown for Epic-
Kitchens and Something-Something (§F).

• Learning curves on the Epic-Kitchens and Something-
Something datasets (§G).

• Additional qualitative examples on the Epic-Kitchens
and the Something-Something datasets (§H).

A. Datasets
A.1. Epic-Kitchens

EPIC-Kitchens is a large-scale benchmark dataset con-
sisting of 700 videos recorded by 32 participants [13, 14],
totalling 100 hours of egocentric videos capturing daily ac-
tivities in kitchen environments. In our experiments, we
use the annotations for the action recognition task. It fea-
tures compositional actions which can be broken down into
the noun (the active object participating in the action, e.g.
“carrot”, “pan”, etc.) and the verb (the activity itself, e.g.
“cutting”, “washing”). In total, there are 300 noun and 97
verb categories, while the training and validation set con-
tain ⇠ 68k and ⇠ 10k videos respectively. The modalities
we use in our experiments include the RGB frames, the au-
dio, and the optical flow. We extract the audio directly from
the mp4 files, and use the optical flow as released by the
dataset authors [14].

A.1.1 Epic-Kitchens Unseen Participants

This particular subset of the Epic-Kitchens validation split
contains 1065 action sequences from two participants which
were not observed in the training dataset (i.e. videos
recorded by them are not included in the training data). We
use this data split to more explicitly gauge the composi-
tional generalization performance of the models. Namely,
standard RGB models tend to pick up undesirable biases to

discriminate between different actions, i.e. objects or envi-
ronment cues unrelated to the action [33]. Using the Epic-
Kitchens Unseen Participants split, we verify the extent to
which students distilled from multimodal teachers are ro-
bust w.r.t. this type of distribution shift.

A.2. Something-Something

The Something-Something V2 [21] dataset consists
of (mainly) egocentric videos of people performing 174
unique object-agnostic actions with their hands, e.g. “push-
ing [something] left”, “taking [something] out of [some-
thing]”. While the dataset also contains exocentric videos,
all the sequences describe similar hand-object interactions,
with the main distinction being the orientation of the hands.
Notice that the action classes do not account for specific
objects, but rather, only for the activity itself. Therefore,
on Something-Something, there is increased focus on cap-
turing temporal relationships that characterize the actions.
The training and validation set contain ⇠ 169k and ⇠ 26k
videos respectively. Furthermore, to deal with the environ-
ment bias (models relying on unrelated environmental cues
to discriminate between the actions), videos recorded by the
same participant can be in either the training or validation
set. Nevertheless, the objects the participants interact with
– even though unrelated to the action label – can appear in
both the training and the testing data, indicating that mod-
els that observe the videos through the RGB modality can
overfit on the objects’ appearance.

A.3. Something-Else

In Something-Something, the objects present in the
scene (where the action takes place) may appear in both
the training and the testing data. The goal of Something-
Else [33] is to deal with the issue of models exploiting
visual cues related to objects’ appearance. Materzynska
et al. [33], propose a data split according to the objects’
distribution at training and test time. The data is divided
such that the models encounter distinct objects during train-
ing and testing. The training and validation set contain
⇠ 55k and ⇠ 58k videos respectively, with 174 action cat-
egories. This data split is explicitly aimed at testing the
compositional generalization of the models. Furthermore,
Materzynska et al. [33], show that a standard RGB-based
model [8] exhibits significantly lower performance on the
Something-Else split compared to the standard Something-
Something split. To improve the generalization ability of
standard RGB-based models, the work of Materzynska et

al. [33], as well as subsequent works [25, 43], propose us-
ing object detections as input to the model [44], as they are
agnostic to the appearance of individual objects.



B. Data Modalities & Models
B.1. RGB frames (RGB)

To encode the RGB frames we follow the standard
setting of [31] for all datasets – Epic-Kitchens (includ-
ing the Unseen split), Something-Something (including the
Something-Else compositional generalization split). Unless
stated otherwise, we use the Swin-T [31] model to pro-
cess the RGB frames. During training, we resize the im-
age such that the shorter dimension (typically the height) is
set to a value randomly chosen from the interval [224, 320],
and subsequently select a random 224 ⇥ 224 crop. Addi-
tionally, we adopt random horizontal flips with probability
50% (only for Epic-Kitchens), and color jittering. During
inference, we resize the image such that the shorter dimen-
sion (typically the height) is set to 224, and then select a
224⇥ 224 central crop for each frame.

In the case of the R3D [27] models, where we focus on
testing our approach on computationally cheaper and faster
architectures and settings, we keep the same train and infer-
ence setup, with the exception of the final crop size which
we reduce to 112, as per Kataoka et al. [27].

B.2. Optical Flow (OF)
We process the optical flow frames in the same fashion as

the RGB frames and use the same vision backbone (Swin-
T) for both Epic-Kitchens (including the Unseen split) and
Something-Something (including the Something-Else com-
positional generalization split). We use the two components
of the velocity as the first two channels of the input, and in
order to maintain the same architecture, we append an addi-
tional channel where we set each pixel intensity to 0.0, ef-
fectively expanding the number of input channels to 3. We
use the same data augmentations as with the RGB model,
with the exception of color jitter.

B.3. Audio (A)
On Epic-Kitchens, we first convert the 24000Hz stereo

audio to 16000Hz monoaural audio. We compute the mel-
spectrograms of audio segments using 1024 FFT bins and
128 mel filter banks. We use the Hann window with length
of 160, with an 80 sample overlap between successive win-
dows. We square the magnitude after computing the FFT,
and thus obtain the signal power at each frequency bin for
each time-step. For the audio segments of 1.116 with the
sample frequency of 16000, we thus obtain spectrograms
with 128 frequency bins and 224 timesteps.

During training, as data augmentation, we perform ran-
dom time and frequency masking of the spectrograms, as
per the work of [38]. In time masking, with a probability
of 50%, we randomly chose the number of masked time-
steps Tn from the range [0, 80], and the starting time-step
from the range [0, 224�Tn), such that, for all the frequency

bins, the range of time-steps [Ts, Ts+Tn) is masked by set-
ting the power value in the spectrogram to 0. In frequency
masking, with a probability of 50%, we randomly chose
the number of masked frequency bins Fn from the range
[0, 80], and the starting frequency bin Fs from the range of
[0, 128 � Fn), such that, for all the timesteps, the range of
bins [Fs, Fs + Fn) is masked by setting the power value
in the spectrogram to 0. Afterwards, we resize the spectro-
gram height to a value randomly chosen from the interval
[224, 320], and finally select a random 224⇥ 224 crop.

During inference, we do not perform time and frequency
masking, we simply resize the height of the spectrogram to
224 and select a 224⇥ 224 central crop for each frame.

We use the obtained spectrogram repeated 3 times to
construct a 3-channel input for the Swin-T backbone. De-
spite the simple setup, our audio-specific model performs
on-par with more sophisticated state-of-the-art audio mod-
els [48] on Epic-Kitchens.

B.4. Object Detections (OBJ)

When pre-processing the Object Detections (on
Something-Something and Something-Else) we closely
follow the setup of [43]. We represent each video frame
with only its object detections – bounding boxes & ob-
ject categories. We use the object detections released
from Herzig et al. [25] for Something-Something and
Materzynska et al. [33] for Something-Else, which had
been obtained using a Faster R-CNN [44], trained as per the
setting of [46]. We use the STLT (Spatial-Temporal Layout
Transformer) model to encode the object detections, while
following the settings and the implementation of [43].

In the STLT model, one Transformer model [53] encodes
the spatial relations between the objects in each frame inde-
pendently, while another Transformer encodes the temporal
relations given the embedding of each frame (output of the
Spatial-Transformer).

C. Loss Term Weighting - Something-
Something & Something-Else

In the vein of the ablation study reported in Table 5
(main paper), we conduct experiments on the Something-
Something and the Something-Else datasets. Namely, the
main findings from Table 5 suggest that (i) training with the
ground-truth labels cross-entropy loss, in conjunction with
the multimodal knowledge distillation loss, overcomes the
issue of inferior modality-specific teachers, and (ii) weight-
ing the teachers in the ensemble (such that their each indi-
vidual cross-entropy loss on a holdout set of Z = 1000 sam-
ples are minimized) improves the performance further. In
Table 6, however, we observe that in the case of Something-
Something and Something-Else, the addition of the loss
term featuring ground-truth labels has a small effect on



Something-Something Something-Else

Objective � � Action@1 Action@5 Action@1 Action@5

LCE 0.0 — 60.3 86.4 51.8 79.5
LKL 1.0 30.0 63.0 88.9 59.1 86.1

LCE ^ LKL 0.8 30.0 63.1 88.3 59.3 86.3

Table 6: Ablation study on Something-Something and Something-
Else; �: Distillation and Cross-Entropy loss balancing term; �:
Temperature of the Ensemble Teacher Weighting.

the performance of the student. Namely, as discussed in
the main paper, on both the Something-Something and the
Something-Else datasets, all modality-specific models per-
form well, and are complementary to each other, therefore,
there is a lesser need for joint training using the ground truth
labels and the distillation loss.

D. Details on action recognition models trained
on multimodal data

Multiple works explore a similar setting, i.e. using multi-
ple modalities for training while performing inference using
only RGB frames. Some of the most prominent works are
ModDrop [37], DMCL [17, 18], and Omnivore [20].

ModDrop. Neverova et al. [37] propose a method where
a multimodal model is made robust to missing modalities
during inference by randomly dropping out modalities dur-
ing training. Namely, the model is trained such that it might
observe all modalities, a partial set of modalities or only a
single modality during training. This makes the model rec-
ognize cues, generally multimodal, from RGB data, and is
therefore superior to an RGB model.

DMCL. Garcia et al. [17, 18] propose a four-step
mulitmodal distillation framework which is tested on non-
egocentric data. They train a model on multimodal inputs,
where for each training video-action sample, the teacher
network is established as the model which exhibits the low-
est cross-entropy w.r.t. ground truth action, and the remain-
ing models are the students. Then, the student models are
trained on the soft teacher labels. On the other hand, our
method is simple – standard knowledge distillation – and
flexible – other models can easily be added to the ensemble
and the student model can be retrained while keeping the
existing models fixed.

Omnivore. [20] To the best of our knowledge, Omni-
vore is the latest and best performing method that uses mul-
timodal data during training, while using only unimodal
data during inference. Compared to multimodal distilla-
tion, Omnivore can perform inference using a single set of
weights across all different modalities it was trained on. In
particular, Girdhar et al. [20] use multimodal data during
pre-training, while for the downstream task, the model is di-
rectly fine-tuned on the RGB frames. The resulting model –
pre-trained on omnivorous data – is superior. In our work, to

Dataset Objective � � Noun@1 Verb@1 Action@1

Epic Kitchens Regular LCE 0.0 — 52.0 61.7 38.3
LCE ^ LKL 0.8 1.0 53.5 65.4 41.2

Epic Kitchens Unseen LCE 0.0 — 38.3 51.7 25.4
LCE ^ LKL 0.8 1.0 42.5 54.7 30.4

Epic Kitchens Seen LCE 0.0 — 53.7 63.0 39.9
LCE ^ LKL 0.8 1.0 54.8 66.7 42.5

Table 7: Epic-Kitchens dataset (regular validation set, environ-
ments Unseen during training, environments Seen during train-
ing).

establish an Omnivore baseline parallel to multimodal dis-
tillation, we perform training on the multimodal data the
downstream task features.

To train a single model (single set of weights) using
multimodal data, Girdhar et al. [20] propose two strategies
to sample the batches: (i) Batches contain data of mixed
modalities – heterogenous batches, or (ii) each batch is uni-
modal – homogenous – with a randomly chosen modality.
In our work, we found that (i) yields a model with perfor-
mance similar to the simply training the model on RGB
frames, and therefore, we opted for (ii).

E. Performance Breakdown on Seen and Un-
seen Participants

To assess whether our approach yields improvements in
terms of generalizing to new visual environments, we iso-
late the videos of participants in the Epic-Kitchens valida-
tion dataset (which we dub as Epic-Kitchens Regular in Ta-
ble 7 that are not included in the Epic-Kitchens Unseen split
(Section A.1.1). We dub this dataset split as Epic-Kitchens
Seen, as it consists videos of participants that have also been
featured in the training data (and thus show visual environ-
ments that have already been observed during training). In
Table 7, on the Epic-Kitchens dataset, we contrast the re-
sults on the Unseen split with those on the Seen split. We
notice that while the performance improves on the Seen
split, the gain of our approach is even larger on the Un-
seen split (in line with optical flow and audio being more
invariant w.r.t. environment appearance). Consequently, we
observe a smaller performance drop going from Seen to Un-
seen dataset splits in the case of our approach, suggesting a
lower degree of overfitting to the appearance of objects and
environments.

F. Per-Class Performance Breakdown
In Figure 4 in the main paper, we provided a per-class

performance breakdown of the 20 most frequent actions for
Epic-Kitchens and Something-Something. We also present
the per-class performance breakdown for the teacher the
top-20 most frequent action classes in Figure 8. On these
actions, the teacher ensemble performance generally fol-
lows a similar trend as the student, shown in Figure 4, albeit



Figure 8: Per-class improvement of the teacher ensemble over the
RGB baseline on the top-20 most frequent actions across datasets.

achieving higher improvement with respect to the baseline,
as expected from its higher overall performance.

Furthermore, in Figure 9 and Figure 10, we provide an
extended per-class performance breakdown for the student
on the 100 most frequent actions. On both datasets, we ob-
serve that the student is superior to the model trained on the
ground truth labels on the majority of action classes.

Finally, we also provide an extended per-class perfor-
mance breakdown for the teacher on the 100 most frequent
actions. On both datasets, we observe that the teacher
achieves slightly higher overall performance than the stu-
dent, achieving positive relative improvement on a larger
number of action categories.

G. Learning curves
To ensure better reproducibility, we also report learn-

ing curves on the Epic-Kitchens and Something-Something
dataset. Namely, in Figure 13 we report the top-1 valida-
tion set accuracy measured at the end of each epoch on the
y-axis, and the number of executed training epochs on the x-
axis. We observe that for both datasets, the distilled student
converges to a model which generalizes better than training
on the ground truth labels alone.

H. Qualitative Examples
We report additional qualitative examples in Figure 14

supplementing the results of Figure 7 in the main paper.



Figure 9: Per-class performance change between the student and the RGB baseline on the Epic-Kitchens regular split.

Figure 10: Per-class performance change between the student and the RGB baseline on the Something-Something dataset.

Figure 11: Per-class performance change between the teacher and the RGB baseline on the Epic-Kitchens regular split.



Figure 12: Per-class performance change between the teacher and the RGB baseline on the Something-Something dataset.

Figure 13: Learning curve on the Epic-Kitchens dataset (left) and the Something-Something dataset (right).



Figure 14: Qualitative evaluation for Epic-Kitchens (top) and Something-Something (bottom).


