
DynaMITe: Supplementary Material

Abstract

In this supplementary material, we provide some addi-
tional details, ablations and also qualitative results for our
approach.

I. Additional Implementation Details

As explained in Sec. 3, DynaMITe takes an image as
input, and generates a set of output masks probabilities
Y t = {Y t

1 , Y
t
2 , ..., Y

t
n} by multiplying the instance en-

coder’s output Qt
out with the output feature map FM

out at
timestep t. Here, each Yi represents a set of object probabil-
ities for oi ∈ {O, bg}, where bg represents the background.
The final segmentation masks Mt are then obtained by first
taking a max per pixel over each Yi, and then an argmax
over the entire Y t.

Training. During training, we apply a weighted sum of the
binary cross-entropy loss and the dice loss L = λ1Lbce +
λ2Ldice [4] on the individual mask probabilities. The net-
work is trained end-to-end using the AdamW [2] optimizer
for 50 epochs with a batch size of 32 and an initial learning
rate of 1e − 4, which is then decayed by 0.1 after 44 and
48 epochs respectively. The models used for ablation are
trained with batch size 128 and an initial learning rate of
5e− 4.

II. MIST: Additional Evaluation Strategies

In Sec. 4 we discussed a number of click simulation
strategies that could potentially capture some of the user
patterns for the MIST. Since these simulation strategies
are not exhaustive, we discuss a few more such next-click
strategies that could be used to better emulate how a user
might perform a MIST. We also evaluate DynaMITe on all
of these strategies in Tab. I, and once again confirm that our
model is robust against different user patterns.

Round-robin: The round-robin strategy assigns a click
window of β clicks for each of the objects in an image.
Here, an object is chosen randomly and after the current
object of focus exhausts all the β clicks, the next random
object is chosen and then refined until completion. Once
all the objects in the input image are processed in this man-

ner, the round-robin strategy revisits all the failed objects
and then tries to refine their segmentation masks either until
all the objects are fully segmented, or until the image-level
click budget τ ∗ |O| is fully used up.

Worst with limit: Here, in each iteration we choose the
object with the worst IoU, as we also do in the worst strat-
egy described in Sec. 4, but we additionally add a per-object
click limit β to each object. Upon selecting the next worst
object, we first check if this object has not reached its click
limit and if it did, we skip this object until all objects have
either been segmented or reached their limit. After this is
the case, we switch to the best strategy and try to segment
the remaining objects as usual until the image budget is used
up or all objects are segmented. The intuition behind this
strategy is that a user will try to improve the biggest errors
first, but they will notice when an object is not segmentable
by the method at hand and rather spend more clicks on ob-
jects which can be segmented properly.

Max-distance: In this strategy, we again start by adding a
positive click to each of the foreground objects. During re-
finement, the next click is simply sampled on the pixel with
the maximum distance from the distance transform com-
puted on the error region of the entire semantic map that in-
cludes the segmentation masks for all objects in an image.
If the chosen pixel falls on an object, then a corresponding
positive click is added to that object, and if it doesn’t, then
it is classified as a negative click.

For the results reported in Tab. I, we use τ = 10 and
β = 10. All of the strategies work and worst with limit ac-
tually results in a lower number of failed objects in all cases,
while having comparable NCI. The max-distance strategy is
actually amongst the worst, resulting in the highest number
of failed images. A potential reason could be that due to the
joint maximum distance transform over all object errors, the
clicks are no longer sampled in order to specifically correct
a mistake with respect to one object and are thus less tar-
geted. This in turn might lead to failed objects, where the
other strategies that rely on a per-object distance transform
actually are able to sample clicks in more useful locations.

III. Extended Ablations
Here, we extend the ablation experiments performed in

Sec. 5.2 to additional datasets. Tab II and Tab. III re-

COCO SBD DAVIS17

Backbone Strategy NCI ↓ NFO ↓ NFI ↓ IoU ↑ NCI ↓ NFO ↓ NFI ↓ IoU ↑ NCI ↓ NFO ↓ NFI ↓ IoU ↑
Resnet50 best 6.20 15690 2508 80.9 2.87 677 352 90.0 3.42 572 380 86.9
Resnet50 random 6.13 13554 2461 84.4 2.81 559 329 90.4 3.39 580 375 87.3
Resnet50 worst 6.09 20224 2447 82.6 2.78 870 324 90.2 3.36 773 375 86.2
Resnet50 max-distance 6.82 14786 2890 85.2 3.24 762 471 90.7 3.57 627 405 87.5
Resnet50 round-robin 6.51 15534 2501 83.4 3.50 620 335 90.3 4.07 609 373 87.1
Resnet50 worst with limit 6.09 13249 2444 84.1 2.79 541 326 90.4 3.36 570 375 87.2
Resnet50 mean 6.31 15506 2542 83.4 3.00 671 356 90.3 3.53 622 380 87.0
Resnet50 std 0.30 2519 173 1.5 0.30 126 57 0.23 0.28 77 12 0.45

Segf-B0 best 6.13 15219 2485 81.3 2.83 655 342 90.2 3.29 546 364 87.5
Segf-B0 random 6.04 12986 2431 84.9 2.76 528 313 90.6 3.27 549 356 87.9
Segf-B0 worst 6.02 19758 2414 83.0 2.75 841 315 90.3 3.25 707 354 87.1
Segf-B0 max-distance 6.79 14588 2885 85.5 3.18 735 441 90.8 3.42 592 388 88.2
Segf-B0 round-robin 6.42 14608 2452 84.0 3.47 609 339 90.5 3.95 573 362 87.8
Segf-B0 worst with limit 6.03 12745 2425 84.6 2.75 519 320 90.5 3.25 526 354 87.9
Segf-B0 mean 6.24 14984 2515 83.8 2.96 648 345 90.5 3.40 582 363 87.7
Segf-B0 std 0.31 2536 183 1.5 0.30 124 48 0.21 0.27 65 13 0.38

hrnet32 best 6.14 15092 2506 81.5 2.81 640 347 90.2 3.23 539 353 87.3
hrnet32 random 6.02 12547 2417 85.1 2.74 515 316 90.6 3.20 541 347 87.7
hrnet32 worst 5.99 19419 2410 83.3 2.72 819 314 90.4 3.18 700 345 86.9
hrnet32 max-distance 6.76 14252 2850 85.6 3.16 721 441 90.8 3.35 583 375 87.9
hrnet32 round-robin 6.42 14279 2467 84.2 3.45 612 340 90.4 3.88 566 349 87.5
hrnet32 worst with limit 6.000 12191 2414 84.7 2.72 496 311 90.5 3.18 528 347 87.6
hrnet32 mean 6.22 14630 2511 84.1 2.93 634 345 90.5 3.34 576 353 87.5
hrnet32 std 0.31 2596 170 1.5 0.31 123 49 0.20 0.27 64 11 0.35

Swin-T best 6.07 14853 2460 81.8 2.75 624 327 90.3 3.20 501 348 87.7
Swin-T random 6.00 12710 2401 85.1 2.69 510 303 90.7 3.16 514 338 88.0
Swin-T worst 5.94 19309 2369 83.4 2.68 798 300 90.5 3.16 704 341 87.1
Swin-T max-distance 6.74 14277 2854 85.7 3.15 737 449 90.9 3.33 550 370 88.2
Swin-T round-robin 6.37 14268 2438 84.3 3.40 595 325 90.6 3.84 534 339 87.9
Swin-T worst with limit 5.9 12436 2390 84.8 2.68 492 302 90.7 3.16 503 340 88.0
Swin-T mean 6.18 14642 2485 84.2 2.89 626 334 90.6 3.31 551 346 87.8
Swin-T std 0.32 2478 184 1.4 0.31 122 57 0.20 0.27 77 12 0.39

Swin-L best 5.80 13876 2305 82.4 2.47 497 266 90.7 3.06 483 330 88.4
Swin-L random 5.70 11958 2242 85.3 2.42 428 249 91.0 3.03 479 320 88.8
Swin-L worst 5.66 18133 2242 83.7 2.41 671 251 90.8 2.99 620 314 88.1
Swin-L max-distance 6.53 13107 2725 86.4 2.87 594 371 91.2 3.11 498 340 88.9
Swin-L round-robin 6.11 13639 2305 84.5 3.12 490 261 90.9 3.70 504 320 88.6
Swin-L worst with limit 5.67 11565 2245 85.0 2.41 422 250 90.9 2.99 461 315 88.7
Swin-L mean 5.91 13713 2344 84.5 2.62 517 275 90.9 3.15 507 323 88.6
Swin-L std 0.35 2351 189 1.4 0.30 98 48 0.17 0.27 57 10 0.29

Table I: Results on MIST using an IoU threshold of 85%. NCI: normalised clicks per image, NFO: number of failed objects,
NFI: number of failed images. All reported models are trained on COCO+LVIS.

port the results of the ablation experiments on additional
multi-instance and single-instance datasets respectively. As
it can be seen from these experiments, our final model
with spaio-temporal positional encoding consistently out-
performs other variants, and is robust towards different task
settings. Although, as stated in Sec. 5.2, the impact of the
spatial embedding seems to be less significant compared to
the temporal counterpart in Tab II, they are still important
for reducing the overall number of clicks especially in the

single-instance setting (ref Tab. III).

IV. Runtime and Memory Analysis

As discussed in Sec. 3, DynaMITe translates each click
into a query to our interactive transformer module. Hence,
the number of queries processed by the transformer in-
creases over time during the iterative refinement process.
In Figure 1, we analyze the impact of such a growing query

(a) Runtime Analysis (b) Memory Analysis

Figure 1: Runtime and memory scaling with respect to the number of clicks for the interactive transformer.

COCO SBD DAVIS17

NCI ↓ NFO ↓ NFI ↓ NCI ↓ NFO ↓ NFI ↓ NCI ↓ NFO ↓ NFI ↓
DynaMITe (Swin-T) 6.06 12997 2458 2.72 557 329 3.20 541 356
- static background queries 6.18 14436 2548 2.79 639 354 3.33 625 393
- Transformer decoder 6.34 14504 2652 2.90 657 384 3.24 582 371

- temporal positional encoding 6.42 14729 2704 2.94 682 402 3.35 617 388
- spatial positional encoding 6.32 14506 2632 2.90 671 395 3.24 569 370
- spatio-temporal positional encoding 6.23 13552 2569 2.86 608 376 3.34 587 379

Table II: Ablation on the network design choices, always relative to the top line. NCI: normalised clicks per image, NFO:
number of failed objects, NFI: number of failed images. All reported models are trained on COCO+LVIS.

GrabCut [6] Berkeley [3] SBD [1] COCO MVal DAVIS [5]

@85 ↓ @90 ↓ @85 ↓ @90 ↓ @85 ↓ @90 ↓ @85 ↓ @90 ↓ @85 ↓ @90 ↓
DynaMITe (Swin-T) 1.56 1.64 1.38 2.06 3.83 6.39 2.27 3.28 3.75 5.19
- static background queries 1.64 1.68 1.35 1.87 3.92 6.51 2.31 3.21 3.84 5.15
- Transformer decoder 1.64 1.76 1.32 2.28 4.18 6.89 2.40 3.50 3.77 5.33

- temporal positional encoding 1.52 1.64 1.51 2.27 4.17 6.89 2.42 3.48 4.04 5.43
- spatial positional encoding 1.76 1.86 1.36 2.41 4.19 6.89 2.44 3.45 3.84 5.28
- spatio-temporal positional encoding 1.56 1.62 1.34 2.10 3.99 6.63 2.28 3.24 4.06 5.38

Table III: Ablation on network design choice, on single-instance segmentation datasets, always relative to the top line.

pool in terms of runtime and GPU memory consumed dur-
ing inference. Both the runtime and the memory increases
as the transformer receives more queries, but the scale-up
is quite slow and falls within a reasonable limit for prac-
tical usage. As shown in Fig. 1a and Fig. 1b, the run-
time increases from 17ms to 34ms as the number of clicks
increases from 1 to 200, and the memory used increases
from around 800MB to 3.2GB. For a large scale dataset
like COCO with an average of 7.3 instances per image,
DynaMITe would need about 47 queries (since NCI is 6.4)
in the final refinement step and hence the average maximum
runtime for a refinement step would be about 23.5ms. The

values reported for both of these experiments in Fig. 1 are an
average over the entire GrabCut dataset on an Nvidia 3090
GPU with 24GB of memory.

V. Refinement Analysis

In this section, we analyze the refinement quality of dif-
ferent variants of DynaMITe for the single-instance set-
ting. Fig. 2 plots change in instance segmentation quality
after each refinement iteration on various single-instance
datasets. DynaMITe can achieve a high segmentation qual-
ity with very few clicks and can further refine the in-

stances very well with additional clicks. Eg. for Grab-
Cut, DynaMITe achieves 84% IoU on average with just one
click, and then refines them to close to 100% IoU.

VI. Annotation Tool
For using DynaMITe in practice, we build a click based

annotation tool that can perform multi-instance interactive
segmentation. Our tool is built using the python based GUI
toolkit Tkinter, and is based on the RITM [7] annotation
tool. The DynaMITe annotation tool supports addition and
deletion of instances within an image, and also allows a user
to switch back and forth between instances to perform mask
refinement. To get a glimpse of our tool, please watch the
video on the project page.

It should be noted that this tool is only a prototype and
cannot be seen as a proper tool that was optimized for the
best possible user experience. Many improvements could
be thought of, e.g. one could optimize the switching be-
tween objects by right-clicking on existing masks and key-
board shortcuts could be included for actions such as creat-
ing a new object. We could also easily extend the tool with
additional functionalities such as the removal of existing
clicks, since this is supported out of the box by DynaMITe.
A detailed exploration of this design space is outside of our
expertise and the scope of this paper.

VII. Qualitative Results
In Fig. 3, we show additional multi-instance segmen-

tation results for sequential segmentation process using
DynaMITe. Here we follow the random strategy, where
we first sample a single click per object, after which we
iteratively select a random object to refine. In most cases,
DynaMITe starts out with a high average IoU after a single
click per object and the resulting masks are often arguably
better than the corresponding ground truth segmentation,
e.g. row 3, 5, and 6. Nevertheless, in most cases we can also
adjust to arbitrary mistakes present in the ground truth anno-
tations. There are also some interesting failure cases such as
the one shown in Fig. 4, where DynaMITe fails to capture
the thin ropes of the kite. Although DynaMITe can seg-
ment fairly thin structures in practice, the automatic click
sampling fails to sample the necessary additional clicks for
DynaMITe to segment the ropes in this particular case.

Figure 2: IoU vs. number of clicks for multiple single-instance datasets.

80.52 90.18 92.70

91.89 92.96 93.08

84.43 88.42 89.44

89.78 93.74 94.06

80.98 89.63 92.30

91.80 92.65 93.08

66.04 77.42 83.71

(a) Ground truth (b) τ = 1 (c) τ = 3 (d) τ = 5

Figure 3: Qualitative examples based on our automatic random click sampling strategy. We show the ground truth and how
the segmentation looks after a click budge of τ ∗ |O|. For τ = 1 we click on each object exactly once. The bottom left corner
of each image shows the average IoU.

38.99 66.47 68.38

(a) Ground truth (b) τ = 1 (c) τ = 3 (d) τ = 5

Figure 4: A qualitative example of a negative result. Even though both the board and the ropes of the kite are segmented
badly, the board can be recovered with a few additional clicks. After a total of 15 clicks, the refinement is not able to
segment the ropes though. Given that the refinement clicks are sampled based on a maximum distance transform, no clicks
are sampled for the very thin structure, even though DynaMITe might actually be able to segment such structures.

References
[1] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,

Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In ICCV, 2011. 3

[2] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 1

[3] Kevin McGuinness and Noel E O’connor. A comparative eval-
uation of interactive segmentation algorithms. Pattern Recog-
nition, 2010. 3

[4] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 3DV, 2016. 1

[5] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams,
Luc Van Gool, Markus Gross, and Alexander Sorkine-
Hornung. A benchmark dataset and evaluation methodology
for video object segmentation. In CVPR, 2016. 3

[6] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
”grabcut”: Interactive foreground extraction using iterated
graph cuts. In SIGGRAPH, 2004. 3

[7] Konstantin Sofiiuk, Ilia Petrov, and Anton Konushin. Reviv-
ing iterative training with mask guidance for interactive seg-
mentation. arXiv preprint arXiv:2102.06583, 2021. 4

