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A. Additional Quantitative Results
In this section, we present additional quantitative evalu-

ations for better understanding our experimental outcomes.
We first extend our robustness analysis, followed by addi-
tional ablations on aggregation and pretraining strategies.

A.1. Robustness Analysis
We explore the open-source CLIP model from [85], eval-

uating its performance on the waterbirds dataset for signs of
spurious correlations learned by the model. These results pre-
sented in Tab. 11 illustrate how classification performance for
the same set of foreground objects drops drastically against
different conflicting backgrounds, even in spite of the task
involving fine-grained categories of birds.

CLIP [85] water land �

waterbird 88.3 70.1 -18.2
landbird 90.5 99.1 -8.6

Table 11: Waterbirds evaluation for OpenAI CLIP model. We
demonstrate how even a CLIP model trained on significantly more
data (400M image-text pairs) contains stronger sensitivty to spuri-
ous correlations than CLIPpy trained with an order of magnitude
less data (12M). The first two columns report top-1 classification
accuracy (%) and the last column reports difference of diagonal and
off-diagonal terms (delta). Higher spurious correlations increase
the absolute value of delta.

A.2. Alternate Aggregation Strategies
Having explored two standard visual aggregation tech-

niques as baselines, we ask how aggregation on the tex-

Method IN VOC COCO ADE-20K

Avg 45.3 50.8 23.8 13.1
Max 42.0 42.6 18.9 10.5

Table 12: Alternate Pooling Strategies for Text Modality. Unlike
the visual modality, performance drops when replacing the default
average pooling (Avg) with maximum pooling (Max).

tual encoder affects CLIPpy performance. In detail, we
first explore maximum pooling for the language modality.
Thereafter, we draw further attention to the visual modality,
exploring more complex pooling strategies.

Language Modality. In Tab. 12, we explore how pool-
ing on the text embedding affects overall performance. We
replace default average pooling with a maximum pooling
operation to discover drops in performance across all metrics.
This poor performance of maximum pooling based aggre-
gation for language is consistent with prior works [42]. We
hypothesize the reasoning as the nature of our task: while
we attempt a localization across the visual modality, on the
language end we reason with the entire text prompt as a
single unit.

Visual Modality. We explored a range of alternate ag-
gregation strategies that performed subpar to spatial max
pooling utilized in CLIPpy. Two noteworthy approaches
include Text Similarity Pooling (TSP) and Weighted Maxi-
mum Pooling (WMP). In TSP, we measure the similarity of
each spatial token (corresponding to different positions) and
obtain a normalized distribution using a softmax operation
(including a temperature for smoothing). We aggregate the
visual modality using a weighted averaging operation where
the similarity of each spatial location to the text is the weight.
WMP follows the same idea but employs per-channel per-
location embedding values instead of similarity as weights
for the aggregation operation. Tab. 14 shows results for TSP,
WMP and max pooling. TSP performs poorly across all
variations while WMP works better at lower temperatures.
Given the common softmax operation, higher temperature
values result in smoother weights for both cases, making
WMP and TSP more similar to average pooling. In the case
of WMP, lower temperatures make the operation similar to
simple spatial maximum pooling, which is reflected in the
improved results for lower temperature values.

A.3. Pretraining Ablations
Self-supervised pretraining of the vision head of CLIPpy

leads to notable performance gains. We also explore how
alternate supervised pretraining affects performance. In par-
ticular, we pretrain the image backbone using ImageNet-1K
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Figure 5: Qualitative examples of bottom-up unsupervised segmentation with CLIPpy. We illustrate examples from PASCAL VOC
dataset with original image and CLIPpy prediction in the top and bottom rows, respectively. Note that colors correspond to clusters and not

semantic labels.

dataset image T5 ImageNet Pascal VOC
init init? accuracy mIoU Jaccard

HQITP
-134M

DINO 3 59.0 50.1 54.6
IN-1K 3 63.6 21.7 40.2
random 3 49.4 37.3 46.3
DINO 55.2 46.9 53.7
IN-1K 60.6 20.9 39.1
random 46.4 37.1 45.8

Table 13: Additional ablation studies with HQITP-134M. Paral-
lel results for Table 8 (center) for ablations on weight initialization.
We observe similar trends in results across these experiments.

in a fully-supervised setting, and use the penultimate features
to initialize CLIPpy. Apart from pretraining, all hyperpa-
rameters are unchanged. We present these results in Tab.
13. We observe when training with HQITP-134M that super-
vised pretraining leads to considerable performance gains
for ImageNet-1K top-1 accuracy, but a considerable drop in
segmentation performance across all three datasets. How-
ever, we note that supervised ImageNet pre-training provides
unfair advantage in the case of ImageNet accuracy, in par-
ticular given the ability of overfitting those visual concepts.
So we focus more on the segmentation results. Interest-
ingly, entirely eliminating visual pre-training, while degrad-
ing segmentation performance, outperforms the ImageNet
supervised pre-training initialized model. This reaffirms our
hypothesis of better generalization of self-supervised fea-
tures for segmentation tasks. We also note that results on
HQITP-134M indicate trends similar to those with CC-12M.

B. Qualitative examples of localization

In this section, we showcase additional qualitative exam-
ples of the success and failures of CLIPpy on bottom-up

unsupervised segmentation and top-down semantic segmen-
tation.

Fig. 5 shows examples of bottom-up unsupervised seg-
mentation on PASCAL VOC for CLIPpy. The left three
examples highlight the strength of the method for images
with less clutter in which there is a single object of inter-
est. The right three examples shows examples highlights the
failures in the presence of scene clutter.

Fig. 6 present additional top-down semantic segmentation
examples across all three datasets used for evaluation. The
examples from PASCAL VOC dataset are the same exam-
ples from Fig. 5. For PASCAL VOC, note that the contrast
between the top-down and bottom-up segmentations. The
top-down segmentation is able to correctly separate the dog
and cat classes (column 3) and also improve performance in
the more cluttered scenes. On the other hand, in column 4, it
missed out on a portion of the train that was segmented prop-
erly in the bottom-up setting. Segmentations from CLIPpy
may contain discontinuities within a single object region in
some cases, especially for the background objects (columns
2-3).

COCO and ADE-20K provide more challenging datasets
and highlight several potential failure modes. A notable fail-
ure mode for CLIPpy is to reverting to the baseline CLIP
behaviour by predicting the salient object class at all loca-
tions. This is visible to some extent in column 2 & 3 in the
COCO examples and column 3 in the ADE-20K examples.
Additionally, CLIPpy results in false positives for cluttered
scenes as visible in some examples of these two datasets.

In summary, CLIPpy is able to localize the salient objects
well in less cluttered scenes, even when multiple objects
belonging to different classes are present. CLIPpy is also
able to coarsely localize some of the salient objects in more
cluttered scenes. In terms of limitations, CLIPpy fails to
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Method temp IN VOC COCO ADE-20K

TSP 0.1 0 2.98 0 0
TSP 1.0 20.15 4.91 1.25 0
TSP 10 24.70 15.83 4.27 2.29

Max 27.05 37.39 17.32 9.69

Method temp IN VOC COCO ADE-20K

WMP 0.1 28.36 31.12 13.64 8.12
WMP 1.0 0 0 0 0
WMP 10 0 3.53 0 0

Max 27.05 37.39 17.32 9.69

Table 14: Alternate Pooling Strategies for Visual Modality. We report results for TSP and WMP with models trained for lesser steps on
CC-12M with no initialization. Max refers to the spatial max operation used in CLIPpy. The temperature of the softmax operation for TSP
and WMP is indicated by temp.

correctly localize some background classes, fails to correctly
recognize object boundaries, and may miss smaller objects
in cluttered scenes.

C. Details of HQITP-134M dataset
High Quality Image Text Pairs (HQITP-134M) consists

of ⇠134 million diverse and high quality images paired with
descriptive captions and titles. Images range in spatial reso-
lution from 320 to 2048 pixels on the short side. All images
are JPEG format and most are RGB. Each example image is
associated with a title, and a list of several captions. A small
fraction (« 1%) of the examples are missing both captions
and title. We favor the associated captions, and find that
these tokenize to an average length of 20.1 tokens, although
the shortest caption is only one token and the longest is over
1000. This dataset was licensed to our research lab by a third
party for commercial use.

To preprocess this dataset for training, we first exclude
all pairs for which no valid caption exists. We also perform
global exact-byte-match image de-duplication across our
full training corpus, meaning that valid examples may be
dropped due to appearing in other subsets of our overall
training dataset. As we draw each example, we create an
image-text pair by sampling from the list of available cap-
tions. The text is then tokenized, and the image is resized
so that the shortest side is 224 pixels, with a further random
crop then applied over the longer dimension to produce a
224 x 224 pixel square image. Lastly, we normalize the
image using statistics derived from our full training corpus.

D. Architecture and Training Details
Our implementations of CLIP and ALIGN employ ViT-

B/16 [27], and EfficientNet-B5[100] for the image embed-
ding, respectively, to mirror the primary results presented in
each respective vision-language model. For the ViT architec-
ture, we experimented with varying patch sizes P = 8 and
P = 16 in order to leverage open-sourced DINO pretrained
weights [12], but report all of our results with P = 16.

We train all models on 224⇥224 images to provide a
fair comparison with [85]. Note however that the published
version of ALIGN employed a 640⇥640 resolution. ViT

models may operate on images at arbitrary spatial resolution.
At inference time we experimented with spatial resolutions
of 224⇥224 and 448⇥448, resulting in 196 and 784 tokens,
respectively. Results were similar across 224 and 448 reso-
lutions, we report only results at 224 for brevity (except for
Fig. 4).

We train models with 32 GPUs across 4 machines with
PyTorch [80] using the LAMB optimizer [116] with a cosine
decayed learning rate with linear warm-up. We employ an
initial learning rate of 1e-3, 2000 warm-up steps, and decay
the rate with a single period over the entire training regime
(32 epochs for CC12M; 10 epochs for HQITP-134M). We
employ a weight decay of 1e-2. All training parameters were
determined through moderate hyperparameter tuning.

Patch Sub-Sampling: During training, we also utilize
overlapping patch generation with patch sub-sampling as
regularization. In particular, the token sequence length is
always maintained at the original value of 224 during training
through random sub-sampling (patches selected according
to uniform distribution). This also allows obtaining a higher
resolution feature map from a fixed resolution image during
inference.

E. Limitations of CNN-based architectures
The primary focus of our presentation is on the Vision

Transformer (ViT) architecture [27]. The reason for this
focus is that the Transformer architecture is particularly well
suited for multimodal learning tasks because one does not
need to craft an architecture for each modality, and tune
the training set up for each particular architecture. We also
recognize that convolutional neural networks (CNN’s) have
a long history of providing state-of-the-art CNN results on
computer vision related problems. EfficientNet-B5 is a mod-
ern state-of-the-art architecture whose meta-architecture and
scaling properties were derived from architecture search
considerations [100] (but see [5]), and provides the visual
backbone for the ALIGN model [50].

We experimented with this model and find that the image
featurization from a CNN-derived backbone achieves favor-
able results with respect to previously published ViT models
on localization problems. Table 6 showcases higher mIoU
for semantic segmentation than a model with a ViT backbone

17



(CLIP) on ADE20K, COCO and Pascal VOC when trained
on the same dataset. Likewise, previous results published on
ALIGN with an EfficientNet-B5 backbone achieved superior
results to a ViT model on COCO and ADE20K in terms of
semantic segmentation 5.

Most importantly, in spite of many attempts, we were
not able to improve the performance of the EfficientNet-B5
architecture for localization. The best results for a CNN-
based architecture we achieved are shown in Table 6, which
are notably below previously published results and our best
results with a ViT architecture. At best, the addition of max-
imum pooling at the top layer of a CNN led to marginal
gains in terms of mIoU or Jaccard similarity. We suspect
that a custom architecture (such as ASPP or FPN) may im-
prove these results further [16, 63], but we consider this out
of scope as we are attempting to learn a featurization that
does not artificially increase the parameterization in order
to solve a specialized task of localization. We suspect that
this limitation of CNN architectures may reflect the fact that
CNN architecture already have learned a representation that
is heavily dependent on the spatial geometry derived from a
convolutional kernel. Such an inductive bias may be not pro-
vide a suitable mechanism for providing global processing
in a segmentation task [107].

F. Prior work on zero shot semantic segmenta-
tion

Recent work has made impressive strides on zero-shot
semantic segmentation. These works focus on training such
models on subsets of segmentation data, whether masks
and/or labels and test the performance of the resulting model
on other splits of data. The zero-shot performance is assessed
by splitting the labeled datasets to ensure that the model is
tested in a zero-shot manner on unseen labels. Table 15
summarizes results from several recent papers [36, 57, 111,
8]

We note that particularly later forms of models achieve
results superior to those presented here [36, 57], but we em-
phasize several important distinctions. First, these models
were trained on segmentation masks in order to learn per-
ceptual grouping across visual imagery. Our work instead
addresses how a model may learn this information without
being explicitly supplied examples teaching such behavior.
Second, most of the models were trained using segmentation
masks from the COCO dataset. Hence, these models might
perform particularly well on this dataset making compar-
isons on COCO less comparable to our model.

5We note that the previously published ALIGN results were based on a
backbone trained with a much larger dataset (1.8B image-text pairs), and it
was evaluated at a higher resolution of 640⇥640 pixels, resulting in a zero-
shot image recognition performance of 76.4. In comparison, our baseline
and proposed models operate at 224⇥224 resolution and was trained on a
10⇥ smaller dataset.

G. Prior work on unsupervised segmentation
The task of unsupervised segmentation groups semanti-

cally related concepts using only pixel information. Recent
advances in self-supervised learning (e.g. [12]) has led to
numerous opportunities across tasks [61, 94], including for
unsupervised segmentation or weakly-supervised localiza-
tion tasks [41, 18, 31, 49, 93]. These methods train and oper-
ate with no semantic labels, performing bottom-up grouping
of image content. A common characteristic is the presence
of iterative clustering mechanisms (e.g. k-Means clustering
[69]). Notably, STEGO [41] employs k-Means and Condi-
tional Random Fields (CRF) [56] to refine and improve the
inference procedure. We hope to apply CRFs (e.g. [47]) to
CLIPpy in future. While CLIPpy exhibits competitive perfor-
mance, we note that techniques proposed by other methods
(e.g. [41]) may be leveraged (and combined with CLIPpy)
to refine our segmentation performance. A key distinction of
our work is the focus on learning a new representation space
aligned to language that exhibits strong perceptual grouping.

H. Details of robustness analysis
We calculate the zero-shot prediction of the class in a non-

standard manner to exploit the spatial reasoning of CLIPpy.
We apply the same zero-shot evaluation to the baseline CLIP
model. Specifically, we first calculate the embedding for all
labels within each category of waterbird, landbird
and background. For each of these categories we calcu-
late the average image embeddings across these labels at
each spatial location.

To exploit the spatial knowledge of the model, we focus
our analysis on all spatial locations which are not labeled as
background. For all locations which maximally predict
a waterbird, we calculate the similarity to the embed-
ding for a waterbird. Likewise, we do the same for all
locations maximized by landbird. Finally, our result-
ing prediction is the class that is closest to its associated
embedding.

We find that these results and the corresponding robust-
ness vary substantially due to the selection of prompts for
each of the three categories. This matches observations in
[85]. In Sec. 4.4 we focus on the results of the model trained
on CC-12M using the prompts listed below which contain
a minimal amount of prompt engineering. In particular, the
prompts for waterbirds and landbirds follow [91].
See also [108].
• background: background
• waterbird: Black footed Albatross, Laysan Albatross, Sooty

Albatross, Crested Auklet, Least Auklet, Parakeet Auklet,
Rhinoceros Auklet, Brandt Cormorant, Red faced Cormorant,
Pelagic Cormorant, Frigatebird, Northern Fulmar, Gadwall,
Eared Grebe, Horned Grebe, Pied billed Grebe, Western Grebe,
Pigeon Guillemot, California Gull, Glaucous winged Gull, Heer-
mann Gull, Herring Gull, Ivory Gull, Ring billed Gull, Slaty
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segment segment
label? mask? ADE20K COCO PASCAL VOC

SPNet [111] 3 3 18.3
ZS3Net [8] 3 3 38.3
LSeg [57] 3 3 27.2 47.4
LSeg+ [35] 3 3 18.0 55.1 † 59.0
ALIGN w/ proposal [35] 3 12.9 17.9 † 22.4
OpenSeg [35] 3 21.1 36.1 † 70.2
OpenSeg + Narr. [35] 3 24.8 38.1 † 72.2

Table 15: Performance of prior zero-
shot segmentation models trained
on segmentation data. All num-
bers report the mIoU for semantic seg-
mentation on ADE20K (150 labels),
PASCAL-VOC (20 labels) and COCO
(50 labels). † indicates models that
were trained on image segmentation
masks from the COCO dataset.

backed Gull, Western Gull, Long tailed Jaeger, Pomarine Jaeger,
Red legged Kittiwake, Pacific Loon, Mallard, Hooded Merganser,
Red breasted Merganser, Brown Pelican, White Pelican, Horned
Puffin, Artic Tern, Black Tern, Caspian Tern, Common Tern,
Elegant Tern, Forsters Tern, Least Tern

• landbird: Groove billed Ani, Brewer Blackbird, Red winged
Blackbird, Rusty Blackbird, Yellow headed Blackbird, Bobolink,
Indigo Bunting, Lazuli Bunting, Painted Bunting, Cardinal, Spot-
ted Catbird, Gray Catbird, Yellow breasted Chat, Eastern Towhee,
Chuck will Widow, Bronzed Cowbird, Shiny Cowbird, Brown
Creeper, American Crow, Fish Crow, Black billed Cuckoo,
Mangrove Cuckoo, Yellow billed Cuckoo, Gray crowned Rosy
Finch, Purple Finch, Northern Flicker, Acadian Flycatcher,
Great Crested Flycatcher, Least Flycatcher, Olive sided Fly-
catcher, Scissor tailed Flycatcher, Vermilion Flycatcher, Yellow
bellied Flycatcher, American Goldfinch, European Goldfinch,
Boat tailed Grackle, Blue Grosbeak, Evening Grosbeak, Pine
Grosbeak, Rose breasted Grosbeak, Anna Hummingbird, Ruby
throated Hummingbird, Rufous Hummingbird, Green Violetear,
Blue Jay, Florida Jay, Green Jay, Dark eyed Junco, Tropical
Kingbird, Gray Kingbird, Belted Kingfisher, Green Kingfisher,
Pied Kingfisher, Ringed Kingfisher, White breasted Kingfisher,
Horned Lark, Western Meadowlark, Mockingbird, Nighthawk,
Clark Nutcracker, White breasted Nuthatch, Baltimore Oriole,
Hooded Oriole, Orchard Oriole, Scott Oriole, Ovenbird, West-
ern Wood Pewee, Sayornis, American Pipit, Whip poor Will,
Common Raven, White necked Raven, American Redstart, Geo-
coccyx, Loggerhead Shrike, Great Grey Shrike, Baird Sparrow,
Black throated Sparrow, Brewer Sparrow, Chipping Sparrow,
Clay colored Sparrow, House Sparrow, Field Sparrow, Fox Spar-
row, Grasshopper Sparrow, Harris Sparrow, Henslow Sparrow, Le
Conte Sparrow, Lincoln Sparrow, Nelson Sharp tailed Sparrow,
Savannah Sparrow, Seaside Sparrow, Song Sparrow, Tree Spar-
row, Vesper Sparrow, White crowned Sparrow, White throated
Sparrow, Cape Glossy Starling, Bank Swallow, Barn Swallow,
Cliff Swallow, Tree Swallow, Scarlet Tanager, Summer Tanager,
Green tailed Towhee, Brown Thrasher, Sage Thrasher, Black
capped Vireo, Blue headed Vireo, Philadelphia Vireo, Red eyed
Vireo, Warbling Vireo, White eyed Vireo, Yellow throated Vireo,
Bay breasted Warbler, Black and white Warbler, Black throated
Blue Warbler, Blue winged Warbler, Canada Warbler, Cape May
Warbler, Cerulean Warbler, Chestnut sided Warbler, Golden
winged Warbler, Hooded Warbler, Kentucky Warbler, Magnolia
Warbler, Mourning Warbler, Myrtle Warbler, Nashville Warbler,
Orange crowned Warbler, Palm Warbler, Pine Warbler, Prairie
Warbler, Prothonotary Warbler, Swainson Warbler, Tennessee

Warbler, Wilson Warbler, Worm eating Warbler, Yellow War-
bler, Northern Waterthrush, Louisiana Waterthrush, Bohemian
Waxwing, Cedar Waxwing, American Three toed Woodpecker,
Pileated Woodpecker, Red bellied Woodpecker, Red cockaded
Woodpecker, Red headed Woodpecker, Downy Woodpecker, Be-
wick Wren, Cactus Wren, Carolina Wren, House Wren, Marsh
Wren, Rock Wren, Winter Wren, Common Yellowthroat

I. Prompts for Zero-shot Segmentation
We employed the following prompts for probing our

vision-language models for zero-shot semantic segmenta-
tion. These prompts were copied from the corresponding
label sets of each dataset with some basic considerations, for
instance, restoring spaces in compound words. For prompts
separated by a comma, the average embedding across all
prompts delineated by commas is associated with each label.

Pascal VOC 2012 [30]
1. background: background, crops, bush, shrub, tiles, pave-

ment, rug, carpet, box, boxes, speaker, storage, painting, board,
panel, poster, clock, cage, drinking glass, park, plaything, toy,
fireplace, bag, bag, bed, bench, book, books, building, buildings,
cabinet, drawer, ceiling, computer, computer case, cup, cups,
door, fence, floor, flower, grass, lawn, turf, ground, soil, dirt,
tiles, keyboard, lamp, mountain, hills, mouse, curtain, platform,
sign, street, rock, stone, shelf, sidewalk, sky, clouds, snow, track,
train track, tree, trees, wall, water, window, wood, woods

2. aeroplane: aeroplane, airplane, aeroplanes, airplanes
3. bicycle: bicycle, bicycles, bike, bikes
4. bird: bird, birds
5. boat: boat, boats
6. bottle: bottle, bottles, water bottle
7. bus: bus, buses
8. car: car, cars
9. cat: cat, cats, kitties, kitty

10. chair: chair, chairs
11. cow: cow, cows, calf
12. diningtable: diningtable, dining table, diningtables, dining

tables, plate, plates
13. dog: dog, dogs, puppy, puppies
14. horse: horse, horses, foal
15. motorbike: motorbike, motorcycle, motorbikes, motorcycles
16. person: person, child, girl, boy, woman, man, people, chil-

dren, girls, boys, women, men, lady, guy, ladies, guys, clothes
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17. pottedplant: pottedplant, pottedplants, plant pot, plant
pots, planter, planters, potted plant

18. sheep: sheep
19. sofa: sofa, sofas
20. train: train, trains, locomotive, locomotives, freight train
21. tvmonitor: tvmonitor, monitor, tv, televison, television mon-

itor

COCO 2017 [64]
1. airplane: airplane
2. apple: apple
3. backpack: backpack
4. banana: banana
5. baseball bat: baseball bat
6. baseball glove: baseball glove
7. bear: bear
8. bed: bed
9. bench: bench

10. bicycle: bicycle
11. bird: bird
12. boat: boat
13. book: book
14. bottle: bottle
15. bowl: bowl
16. broccoli: broccoli
17. bus: bus
18. cake: cake
19. car: car
20. carrot: carrot
21. cat: cat
22. cell phone: cell phone
23. chair: chair
24. clock: clock
25. couch: couch
26. cow: cow
27. cup: cup
28. dining table: dining table
29. dog: dog
30. donut: donut
31. elephant: elephant
32. fire hydrant: fire hydrant
33. fork: fork
34. frisbee: frisbee
35. giraffe: giraffe
36. hair drier: hair drier
37. handbag: handbag
38. horse: horse
39. hot dog: hot dog
40. keyboard: keyboard
41. kite: kite
42. knife: knife
43. laptop: laptop
44. microwave: microwave
45. motorcycle: motorcycle
46. mouse: mouse
47. orange: orange
48. oven: oven
49. parking meter: parking meter

50. person: person
51. pizza: pizza
52. potted plant: potted plant
53. refrigerator: refrigerator
54. remote: remote
55. sandwich: sandwich
56. scissors: scissors
57. sheep: sheep
58. sink: sink
59. skateboard: skateboard
60. skis: skis
61. snowboard: snowboard
62. spoon: spoon
63. sports ball: sports ball
64. stop sign: stop sign
65. suitcase: suitcase
66. surfboard: surfboard
67. teddy bear: teddy bear
68. tennis racket: tennis racket
69. tie: tie
70. toaster: toaster
71. toilet: toilet
72. toothbrush: toothbrush
73. traffic light: traffic light
74. train: train
75. truck: truck
76. tv: tv
77. umbrella: umbrella
78. vase: vase
79. wine glass: wine glass
80. zebra: zebra

ADE-20K (150 frequent labels) [125]
1. airplane: airplane, aeroplane, plane
2. animal: animal, animate, being, beast, brute, creature, fauna
3. apparel: apparel, wearing, apparel, dress, clothes
4. arcade: arcade, machine
5. armchair: armchair
6. ashcan: ashcan, trash, can, garbage, can, wastebin, ash, bin,

ash-bin, ashbin, dustbin, trash, barrel, trash, bin
7. awning: awning, sunshade, sunblind
8. bag: bag
9. ball: ball

10. bannister: bannister, banister, balustrade, balusters,
handrail

11. bar: bar
12. barrel: barrel, cask
13. base: base, pedestal, stand
14. basket: basket, handbasket
15. bathtub: bathtub, bathing, tub, bath, tub
16. bed: bed
17. bench: bench
18. bicycle: bicycle, bike, wheel, cycle
19. blanket: blanket, cover
20. blind: blind, screen
21. boat: boat
22. book: book
23. bookcase: bookcase
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24. booth: booth, cubicle, stall, kiosk
25. bottle: bottle
26. box: box
27. bridge: bridge, span
28. buffet: buffet, counter, sideboard
29. building: building, edifice
30. bulletin: bulletin, board, notice, board
31. bus: bus, autobus, coach, charabanc, double-decker, jitney,

motorbus, motorcoach, omnibus, passenger, vehicle
32. cabinet: cabinet
33. canopy: canopy
34. car: car, auto, automobile, machine, motorcar
35. case: case, display, case, showcase, vitrine
36. ceiling: ceiling
37. chair: chair
38. chandelier: chandelier, pendant, pendent
39. chest: chest of drawers, chest, bureau, dresser
40. clock: clock
41. coffee: coffee, table, cocktail, table
42. column: column, pillar
43. computer: computer, computing, machine, computing, de-

vice, data, processor, electronic, computer, information, process-
ing, system

44. conveyer: conveyer, belt, conveyor, belt, conveyer, conveyor,
transporter

45. counter: counter
46. countertop: countertop
47. cradle: cradle
48. crt: crt, screen
49. curtain: curtain, drape, drapery, mantle, pall
50. cushion: cushion
51. desk: desk
52. dirt: dirt, track
53. dishwasher: dishwasher, dish, washer, dishwashing, ma-

chine
54. door: door, double, door
55. earth: earth, ground
56. escalator: escalator, moving, staircase, moving, stairway
57. fan: fan
58. fence: fence, fencing
59. field: field
60. fireplace: fireplace, hearth, open, fireplace
61. flag: flag
62. floor: floor, flooring
63. flower: flower
64. food: food, solid, food
65. fountain: fountain
66. glass: glass, drinking, glass
67. grandstand: grandstand, covered, stand
68. grass: grass
69. hill: hill
70. hood: hood, exhaust, hood
71. house: house
72. hovel: hovel, hut, hutch, shack, shanty
73. kitchen: kitchen, island
74. lake: lake
75. lamp: lamp
76. land: land, ground, soil

77. light: light, light, source
78. microwave: microwave, microwave, oven
79. minibike: minibike, motorbike
80. mirror: mirror
81. monitor: monitor, monitoring, device
82. mountain: mountain, mount
83. ottoman: ottoman, pouf, pouffe, puff, hassock
84. oven: oven
85. painting: painting, picture
86. palm: palm, palm, tree
87. path: path
88. person: person, individual, someone, somebody, mortal, soul
89. pier: pier, wharf, wharfage, dock
90. pillow: pillow
91. plant: plant, flora, plant, life
92. plate: plate
93. plaything: plaything, toy
94. pole: pole
95. pool: pool, table, billiard, table, snooker, table
96. poster: poster, posting, placard, notice, bill, card
97. pot: pot, flowerpot
98. radiator: radiator
99. railing: railing, rail

100. refrigerator: refrigerator, icebox
101. river: river
102. road: road, route
103. rock: rock, stone
104. rug: rug, carpet, carpeting
105. runway: runway
106. sand: sand
107. sconce: sconce
108. screen: screen, door, screen
109. screen: screen, silver, screen, projection, screen
110. sculpture: sculpture
111. sea: sea
112. seat: seat
113. shelf: shelf
114. ship: ship
115. shower: shower
116. sidewalk: sidewalk, pavement
117. signboard: signboard, sign
118. sink: sink
119. sky: sky
120. skyscraper: skyscraper
121. sofa: sofa, couch, lounge
122. stage: stage
123. stairs: stairs, steps
124. stairway: stairway, staircase
125. step: step, stair
126. stool: stool
127. stove: stove, kitchen, stove, range, kitchen, range, cooking,

stove
128. streetlight: streetlight, street, lamp
129. swimming: swimming, pool, swimming, bath, natatorium
130. swivel: swivel, chair
131. table: table
132. tank: tank, storage, tank
133. television: television, television, receiver, television, set,
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tv, tv, set, idiot, box, boob, tube, telly, goggle, box
134. tent: tent, collapsible, shelter
135. toilet: toilet, can, commode, crapper, pot, potty, stool, throne
136. towel: towel
137. tower: tower
138. trade: trade, name, brand, name, brand, marque
139. traffic: traffic, light, traffic, signal, stoplight
140. tray: tray
141. tree: tree
142. truck: truck, motortruck
143. van: van
144. vase: vase
145. wall: wall
146. wardrobe: wardrobe, closet, press
147. washer: washer, automatic, washer, washing, machine
148. water: water
149. waterfall: waterfall, falls
150. windowpane: windowpane, window
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Pascal VOC 2012

COCO

ADE-20K

Figure 6: Qualitative examples of top-down semantic segmentation with CLIPpy from PASCAL
VOC, COCO and ADE-20K. For Pascal VOC, we supply a color legend for the 20 label classes. Note
that the Pascal VOC examples correspond to the same examples from Fig. 5.
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